GRE Quant (Complete Preparation) All about đđđĢđ đ
đđđĢđ đ: đđŽđđ§đđĸđđđđĸđ¯đ đđđđŦđ¨đ§đĸđ§đ (Atleast, 160 āĻĒā§āϤ⧠āĻšā§āϞā§āĻĒ āĻāϰāĻŦā§ āĻāĻŽāύ āϏāĻžāĻā§āĻļāύ)
Exam Format
āϏāĻŽā§āĻ ā§Ēā§ āĻŽāĻŋāύāĻŋāĻ (⧍⧧+⧍ā§Ŧ, āĻĻā§āĻāĻāĻž āϏā§āĻāĻļāύ āĻŽāĻŋāϞā§)
āĻĒā§āϰāĻļā§āύāĻ ā§¨ā§ āĻāĻŋ āĻĒā§āϰāĻļā§āύ(⧧⧍+ā§§ā§Ģ, āĻĻā§āĻāĻāĻž āϏā§āĻāĻļāύ āĻŽāĻŋāϞā§)āĨ¤
āĻŽāĻžāϰā§āĻāĻ 130â170, in 1-point increments [āĻŽā§āϞāϤ ā§Ēā§Ļ āύāĻŽā§āĻŦāϰ]
Scoring(difficulty level): āĻŽāύ⧠āϰāĻžāĻāĻŦā§, quant āĻ- ā§§āĻŽ āϏā§āĻāĻļāύ⧠āĻāĻžāϞ āĻāϰāϤ⧠āĻšāĻŦā§, āϤāĻžāĻšāϞ⧠āĻāĻāĻžāϰāĻ
āϞ āĻāĻžāϞ āϏā§āĻā§āϰ āϏāĻŽā§āĻāĻŦāĨ¤
quant āĻ-ā§§āĻŽ āϏā§āĻāĻļāύ⧠12 questions āĻāϰ difficulty āϞā§āĻā§āϞ(āĻāύā§āĻŽāĻžāύāĻŋāĻ)-
- difficulty level:1:- 1/2 āĻāĻž
- difficulty level 2:- 1/2 āĻāĻž
- difficulty level 3:- 6/7 āĻāĻž
- difficulty level 4:- 1 āĻāĻž
- difficulty level 5:- 1 āĻāĻž
quant āĻ-⧍⧠āϏā§āĻāĻļāύ⧠15 questions āĻāϰ difficulty āϞā§āĻā§āϞ(āĻāύā§āĻŽāĻžāύāĻŋāĻ)-
- difficulty level 1:- 1/2 āĻāĻž
- difficulty level 2:- 1/2 āĻāĻž
- difficulty level 3:- 3/4 āĻāĻž
- difficulty level 4:- 3/4 āĻāĻž
- difficulty level 5:- 5/6 āĻāĻž
Types of Questions:Â Quantitative Comparison, Multiple Choice (One Ans), Multiple Choice(One or More), Numeric Entry.
Quantitative Comparison: āĻĻā§āĻāĻāĻž Quantity āĻĻā§āĻā§āĻž āĻĨāĻžāĻāĻŦā§- Quantity A āĻ Quantity B āĨ¤ āĻāĻā§āώāϤā§āϰā§, āĻāĻāύ⧠āĻāĻāĻāĻŋ āĻŦā§ āĻšāϤ⧠āĻĒāĻžāϰā§/āĻā§āĻ āĻšāϤ⧠āĻĒāĻžāϰ⧠/ āĻĻā§āĻāĻāĻžāĻ āϏāĻŽāĻžāύ āĻšāϤ⧠āĻĒāĻžāϰ⧠/ undefined āĻāĻā§āĻāĻŦāĻžāϰ āĻāĻā§āĻāϰāĻāĻŽ result – āĻāĻ āĻāĻžāϰ āϰāĻāĻŽā§āϰ answer āĻšāϤ⧠āĻĒāĻžāϰā§āĨ¤
Numeric Entry: āĻāĻā§āώā§āϤā§āϰ⧠answerāĻāĻž type āĻāϰ⧠āĻŦāϏāĻžāϤ⧠āĻšā§āĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠āĻāĻŦāĻžāϰ āĻ āύā§āĻ āϏāĻŽā§ āϏā§āĻĒā§āϏāĻŋāĻĒāĻŋāĻ āĻŦāϞ⧠āĻĻā§āĻā§āĻž āĻšā§ āϝā§āĻŽāύ- āĻĻāĻļāĻŽāĻŋāĻā§āϰ āĻĒāϰ ⧍ āĻĄāĻŋāĻāĻŋāĻ āϰāĻžāĻāĻŦā§āύ, nearest whole āύāĻžāĻŽā§āĻŦāĻžāϰ⧠āϰāĻžāĻāĻŦā§āύ(āϝā§āĻŽāύ- āĻāĻā§āώā§āϤā§āϰ⧠16.5 āĻĨāĻžāĻāϞ⧠17 āϞāĻŋāĻāϤ⧠āĻšāĻŦā§) āĻāϤā§āϝāĻžāĻĻāĻŋāĨ¤ [āĻāĻā§āϞāĻž ⧍āĻāĻžāϰ āĻŽāϤ āĻāϏā§]
Multiple Choice (One Ans): āϝā§āĻā§āĻāĻž/āĻĒāĻžāĻāĻāĻāĻž āĻ āĻĒāĻļāύ āĻĨāĻžāĻā§, āϝāĻžāϰ āĻŽāϧā§āϝ āĻĨā§āĻā§ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻāĻāĻāĻžāĻ correct answer āĻšāĻŦā§āĨ¤ āĻāĻā§āώāϤā§āϰā§, āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻŦā§āϤā§āϤāĻžāĻāĻžāϰ shape āĻāϰ answer option āĻĻā§ā§āĻž āĻĨāĻžāĻā§āĨ¤
Multiple Choice(One or More): āϝā§āĻā§āĻāĻž āĻ āĻĒāĻļāύ āĻĨāĻžāĻā§, āϤāĻžāϰ āĻŽāϧā§āϝ āĻĨā§āĻā§ āĻā§ā§āĻāĻāĻž āĻāĻŋāĻāĻŦāĻž āĻāĻāĻāĻž correct answer āĻšāĻŦā§āĨ¤ āĻāĻā§āώāϤā§āϰā§, āĻĻā§āĻāĻāĻž āĻāĻŋāύāĻŋāϏ āĻĻā§āĻā§ āĻ āĻāĻžāĻāĻĒāĻāĻž āĻŦā§āĻāĻž āϝāĻž- (ā§§) indicate all such values (⧍) square shape āĻāϰ answer option āĻĻā§ā§āĻž āĻĨāĻžāĻā§āĨ¤ [āĻĒāϰā§āĻā§āώāĻžā§ āĻāĻā§āϞāĻž ⧍-ā§ŠāĻāĻžāϰ āĻŦā§āĻļāĻŋ āĻāϏāĻŦā§ āύāĻž]
Number of Questions(Approximate): āĻĒāϰā§āĻā§āώāĻž āĻŦāĻŋāĻāĻŋāύā§āύ āĻĒā§āϰāĻļā§āύ āĻĒā§āϝāĻžāĻāĻžāϰ āĻšāϝāĻŧā§ āĻĨāĻžāĻā§āĨ¤ āϝā§āĻŽāύ-
- Section 1: Quantitative Comparison 4āĻāĻž + Numeric Entry 1/2āĻāĻž + Multiple Choice(One or More) 1/2āĻāĻž
- Section-2: Quantitative Comparison 5āĻāĻž + Numeric Entry 1/2āĻāĻž + Multiple Choice(One or More) 1/2āĻāĻž
āϝ⧠āĻāĻĒāĻŋāĻ āĻšāϤ⧠āϝā§āĻā§āĻāĻŋ āĻĒā§āϰāĻļā§āύ āĻāϰāĻž āĻšā§āĻ āĻŦāĻŋāĻāĻŋāύā§āύ Types of Questions āĻĨāĻžāĻāĻžā§, (approximately) ā§§āĻŽ āϏā§āĻāĻļāύ⧠ā§ĒāĻāĻž math āĻāϰ ⧍⧠āϏā§āĻāĻļāύ⧠ā§ĢāĻāĻž math āĻāϰāĻāĻŽ āĻĨāĻžāĻāϤ⧠āĻĒāĻžāϰā§(āĻāϰ āĻŦā§āϝāϤāĻŋāĻā§āϰāĻŽ āĻšāϤ⧠āĻĒāĻžāϰā§)āĨ¤ + ā§§āĻŽ āϏā§āĻāĻļāύā§āϰ āϏā§āĻā§ must ā§ŠāĻāĻž Data interpretation āĻŽā§āϝāĻžāĻĨ questions āĻāϏā§, ⧍⧠āϧāĻžāĻĒā§ āĻāĻŦāĻžāϰ āĻāĻāĻž āĻāϏāϤ⧠āĻĻā§āĻāĻž āϝāĻžā§ āύāĻžāĨ¤ +
Quant Math āϏāĻŋāϞā§āĻŦāĻžāϏāĻ
1. Arithmetic (āĻĒāĻžāĻāĻŋāĻāύāĻŋāϤ)
1.1 Integers(/Number System)
1.2 Fractions
1.3 Exponents and Roots
1.4 Decimals
1.5 Real Numbers
1.6 Ratio
1.7 Percent
āĻāĻŽāĻžāĻĻā§āϰ āϏā§āĻŦāĻŋāϧāĻžāϰā§āĻĨā§ Arithmetic āĻāϰ āĻāĻ āϏāĻŋāϞā§āĻŦāĻžāϏ āĻāϰ āĻŦāĻŋāϏā§āϤāĻžāϰāĻŋāϤ āĻāĻžāϰā§āϏāύāĻā§ āĻĻā§āĻāĻāĻž āĻĒāĻžāϰā§āĻā§ āĻāĻžāĻ āĻāϰ⧠āĻĒā§āĻŦ-Â
Topics Part 1: Basic Math Terms & Symbols || Integer(/Number System): Positive, Negative || Basic operations: Odd, Even,Mutiply,Division || Consecutive numbers|| Divisibility {Unit Digit + Remainder} || Factors, Multiples || Prime Numbers, || HCF and LCM
Topics Part 2: Fractions, Decimals || Exponents, Square, Cube, Square root, Cube root || Real Number, Number Line, Inequalities and Absolute Value, Reciprocals || Ratios || Proportion || Percent
2. Algebra (āĻŦā§āĻāĻāĻŖāĻŋāϤ)
2.1 Algebraic Expressions
2.2 Rules of Exponents
2.3 Solving Linear Equations
2.4 Solving Quadratic Equations
2.5 Solving Linear Inequalities
2.6 Functions
2.7 Applications
2.8 Coordinate Geometry
2.9 Graphs of Functions
3. Geometry (āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ)
3.1 Lines and Angles
3.2 Polygons
3.3 Triangles
3.4 Quadrilaterals
3.5 Circles
3.6 Three-Dimensional Figures
4. Data Analysis (āĻĄā§āĻāĻž āĻāύāĻžāϞāĻžāĻāϏāĻŋāϏ)
4.1 Methods for Presenting Data
4.2 Numerical Methods for Describing Data
4.3 Counting Methods
4.4 Probability
4.5 Distributions of Data, Random Variables, and Probability Distributions
4.6 Data Interpretation Example
(For Exam Day Preparation: selected topics) āϝā§āϏāĻŦ āĻāĻĒāĻŋāĻ āĻšāϤ⧠āĻĒā§āϰāĻļā§āύ āĻāϏāĻžāϰ āϏāĻŽā§āĻāĻžāĻŦāύāĻž āĻŦā§āĻļāĻŋ-
āĻŦāĻ (āĻĒā§āϰāϏā§āϤā§āϤāĻŋ)
Preparation: āϏāĻŋāϰāĻŋāϝāĻŧāĻžāϞāĻŋ āĻĻā§āĻāĻāĻž āϏā§āĻā§āĻĒ āĻ āύā§āϏāϰāĻŖ āĻāϰā§/āĻĒāĻĻā§āϧāϤāĻŋāϤ⧠āĻĒā§āϰāĻŋāĻĒāĻžāϰā§āĻļāύ āύā§āĻŦ:-
- âĸ [Concept āĻāĻžāύāĻžāϰ āĻāύā§āϝ] :Âģ Basic Knowledge Âģ âĸ Important Formulas Âģ âĸ Shortcut Techniques
- âĸ [Practice āĻāϰ āĻāύā§āϝ] :Âģ Practice Problems Âģ âĸ Test Taking Strategies Âģ âĸ Personal Hand Note(Mistakes & improvement)
1. [Concept āĻāϰ āĻāύā§āϝ] āĻāĻĒāύāĻŋ āϝāĻĻāĻŋ āĻāĻā§ āĻŽā§āϝāĻžāĻĨ āĻĒāĻĄāĻŧāĻž āύāĻž āĻĨāĻžāĻā§, āϤāĻžāĻšāϞ⧠–
ā§§) đđđ§đĄđđđđđ§ đ-đ đŦđđĢđĸđŦ [(đđđ§đĄđđđđđ§ āĻāϰ GRE All the Quant āĻŦāĻž đđđ§đĄđđđđđ§ āĻāϰ Math Strategies) – āĻāĻ ā§ŠāĻāĻž āĻŦāĻ-āĻ āĻāĻāĻ āϧāϰāύā§āϰ, āϤāĻžāĻ āϝā§āĻā§āύ⧠āĻāĻāĻāĻž āĻĢāϞ⧠āĻāϰāϞā§āĻ āĻšāĻŦā§]
⧍) đđđ§đĄđđđđđ§ đđĨđ (āĻŦāĻŋāĻā§āύāĻžāϰ āϞā§āĻŦā§āϞ⧠āĻšā§āϞā§āĻĒ āĻāϰā§) [āĻāĻāĻžāϰ ⧍āĻāĻž edition āĻāĻā§, āϝā§āĻā§āύ⧠āĻāĻāĻāĻž āĻĒā§āϞā§āĻ āĻšāĻŦā§] āϤāĻŦā§- Manhattan 5lb (3rd edition) : Chapter 7-30 [āĻāĻāĻž āϏā§āĻŦāĻŋāϧāĻž āĻšāĻā§āĻā§ topic wise āĻĻā§ā§āĻž āĻāĻā§, āĻāϰ āĻĒāϰāĻžāĻŽāϰā§āĻļ āĻĨāĻžāĻāĻŦā§ āĻ āĻŦāĻā§ā§āϰ āĻĒā§āĻāύ⧠āĻĨāĻžāĻāĻž solution āĻā§āϞ⧠āĻĢāϞ⧠āύāĻž āĻāϰāĻž āĻāĻžāϰāĻŖ āĻāĻā§āϞāĻž āĻšā§āĻĻāĻžāĻ āĻĒā§āĻāĻāĻŋā§ā§ āĻāĻāĻŋāϞ āĻāϰ⧠āĻĻā§āĻāϝāĻŧāĻž āĻšā§ā§āĻā§, āϤāĻžāĻ āĻ
āύāϞāĻžāĻāύ āĻĨā§āĻā§ āϏāϞā§āϝā§āĻļāύ āĻŦā§āϰ āĻāϰāĻžāĻāĻžāĻ āĻŦā§āϏā§āĻ]
(āĻā§āϝāĻžāĻāĻžāĻāϰāĻŋ)
1. Arithmetic – 7, 11, 12, 13, 15, 20 (Total 6chapters)
2. Algebra – 8,9,10,14,16, 17,18,19 (Total chapters)
3. Geometry – 25, 26, 27, 28, 29 (Total Schapters)
4. Data Interpretation – 21, 22, 23, 24 (Total 4chapters)
Âģ āĻŦā§āϏāĻŋāĻ āĻāĻŋāύāĻŋāϏāĻā§āϞā§āϰ āϧāĻžāϰāĻŖāĻž āĻāĻāĻĻāĻŽ āĻā§āϞāĻŋā§āĻžāϰ āĻļā§āĻāĻžāϰ āĻāύā§āϝ– Saifurs English, Khairul’s Basic Math (āĻĒāĻžāĻāĻŋāĻāĻŖāĻŋāϤ, āĻŦā§āĻāĻāĻŖāĻŋāϤ āĻāĻŦāĻ āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ āĻā§āϝāĻžāĻĒā§āĻāĻžāϰ) āĻŦāĻž NCTB Class Five to Nine Math Books (If Possible)
Âģ āĻļāϰā§āĻāĻāĻžāĻ āĻļā§āĻāĻžāϰ āĻāύā§āϝāĻ Note āĻāϰāϤ⧠āĻšāĻŦā§ + āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻ āĻĢāϞ⧠āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤
āĻ
āĻĨāĻŦāĻž, āĻāϰ āϝāĻĻāĻŋ āĻŽā§āϝāĻžāĻĨ āĻŽā§āĻžāĻāĻžāĻŽā§āĻāĻŋ āĻāϰāĻž āĻĨāĻžāĻā§, āϤāĻžāĻšāϞ⧠–
ā§§) đđ¨đ đđĸđĨđĨđđĢ đđđ đđđđĄ
⧍) đđđđĢđđ° đđđ đđŽđđ§đ đđĢđđđđĸđđ
Âģ Magoosh (Optional)- Magoosh GRE Quant Practice Questions (More than 600 questions) & Magoosh GRE Math Tutorials Videos (About 200 Videos) āĻāĻā§āϞā§āϰ āϏāĻžāĻĨā§ āĻāĻāύāĻāĻžāϰ ets test āĻāϰ standard āĻŽāĻŋāϞ āύāĻžāĻ, āϤāĻžāĻāĻžā§āĻž āĻšā§āĻĻāĻžāĻ āĻāĻ āĻŋāύ āĻāĻžāĻāĻĒā§āϰ āĻ āϏā§āĻā§āϞ⧠āĻšā§ā§ āĻā§āϏā§āĨ¤ āϤāĻžāĻ āĻĢāϞ⧠āĻāϰāĻž āύāĻž āĻāϰāĻž āĻāĻĒāύāĻžāϰ āĻāĻā§āĻāĻžāĨ¤
2. [Practice āĻāϰ āĻāύā§āϝ] āĻāϰāĻĒāϰ āĻāĻāĻāĻžāύāĻž āĻĒā§āϰāĻžāĻā§āĻāĻŋāϏ āĻāϰāĻžāϰ āĻāύā§āϝ –
ā§Š) (ETS) đđđ đđđđĄ đđđ¯đĸđđ° [āĻāĻĒāĻŋāĻāĻāϝāĻŧāĻžāĻāĻ āĻĒā§āϰāĻžāĻā§āĻāĻŋāϏ āĻāϰāĻžāϰ āĻāύā§āϝ] (āĻāĻāĻžāĻ āĻŽā§āϞāϤ āϏāĻŋāϞā§āĻŦāĻžāϏ, āϝāĻž āĻ
āύā§āĻā§āĻ āĻāĻžāύā§āύāĻž)
ā§Ē) (ETS) đđđ đđŽđđ§đđĸđđđđĸđ¯đ đđđđŦđ¨đ§đĸđ§đ
ā§Ģ) (ETS) đđđ đđđđĸđđĸđđĨ đđŽđĸđđ
ā§Ŧ) đđĸđđđĸđđŽđĨđđ˛-đ°đĸđŦđ đđđ đĒđŽđđŦđđĸđ¨đ§đŦ
ā§) đđ¨đŠđĸđ-đ°đĸđŦđ đđđ đĒđŽđđŦđđĸđ¨đ§đŦ
ā§Ž) KMF 1147math
āĻĢāĻžāĻāύāĻžāϞāĻŋ, Mock Test
āĻāĻžāĻāϞā§-
- ETS GRE BIG BOOK āĻāϰ 16-20 Quant Section āĻāĻž āĻĢāϞ⧠āĻāϰāϤ⧠āĻĒāĻžāϰā§āύ (Data Interpretation āĻāϰ āĻāύā§āϝ āĻāĻāĻž āĻāĻžāϞāĻ)
- Nova GRE Math Bible (Geometry and Counting āĻāϰ āĻāύā§āϝ āĻŽā§āĻāĻžāĻŽā§āĻāĻŋ āĻāĻžāϞ)
- GMAT Quant Review āĻāϰ 180-200 āĻāϰ āĻŽāϤ āĻĒā§āϰāĻļā§āύ āϝā§āĻā§āϞ⧠āĻĻā§ā§āĻž āĻāĻā§ āĻāĻā§āϞāĻž āĻĒā§āϰā§āϝāĻžāĻāĻāĻŋāϏ āĻāϰāϤ⧠āĻĒāĻžāϰā§āύāĨ¤ āĻāϰ, GMAT Official Guide āĻĨā§āĻā§ algebra āĻāϰ words problems(distance,velocity,mixture,profit,age,etc) āĻā§āϞāĻž āĻĒā§āϰāĻžāĻāĻāĻŋāϏ āĻāϰāĻž āĻāĻžāϞāĻ
- Attempt ETS GRE Power Prep
- ETS Power Prep Plus Question 240Qs+
Tips, Tricks & Teqniques (All)
answer āĻāϰāĻžāϰ āĻā§āĻāύāĻŋāĻāĻā§āϞā§/āĻā§āĻļāϞāĻ
- * Quant āĻāϰ ā§§āĻŽ āϏā§āĻāĻļāύ⧠āĻā§āώā§āĻāĻž āĻāϰāĻŦā§āύ āϝāϤāĻāĻž āϏāĻŽā§āĻāĻŦ āĻŦā§āĻļāĻŋ āĻāϤā§āϤāϰ āĻāϰāϤā§āĨ¤ āĻā§āώā§āĻāĻž āĻāϰāĻŦā§āύ āĻāĻŽāĻĒāĻā§āώ⧠āϝā§āύ ā§§ā§/ā§§ā§Ž āĻāĻž āĻāĻžāϰā§āĻā§āĻ āĻšāϝāĻŧāĨ¤
- * āϏāĻŽāϏā§āϝāĻžāĻāĻŋ āĻāĻžāϞā§āĻāĻžāĻŦā§ āĻŦā§āĻā§ āύāĻŋāύ āĻāĻŦāĻ āĻā§ āĻā§ āĻā§āĻāύāĻŋāĻ āĻŦāĻž āϏā§āϤā§āϰ āĻĒā§āϰāϝāĻŧā§āĻ āĻāϰāĻž āϝā§āϤ⧠āĻĒāĻžāϰ⧠āϤāĻž āĻāĻžāĻŦā§āύāĨ¤ āϤāĻžāϰāĻĒāϰ āĻļā§āϰ⧠āĻāϰā§āύāĨ¤
- * āĻŽā§āύā§āĻāĻžāϞ āĻā§āϝāĻžāϞāĻā§āϞā§āĻļāύā§āϰ āĻĒā§āϰāϤāĻŋ āĻā§āϰ āĻĻāĻŋāύ āĻāĻŦāĻ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻ āϰāĻžāĻĢ āĻĒā§āĻĒāĻžāϰ āϝāϤāĻāĻž āϏāĻŽā§āĻāĻŦ āĻāĻŽ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āύāĨ¤
- * āĻā§āύ⧠āĻĒā§āϰāĻļā§āύ⧠āĻ āϤāĻŋāϰāĻŋāĻā§āϤ āĻŦā§āĻļā§ āϏāĻŽāϝāĻŧ (⧍ āĻŽāĻŋāύāĻŋāĻā§āϰ āĻŦā§āĻļā§) āĻŦā§āϝāϝāĻŧ āĻāϰāĻŦā§āύ āύāĻžāĨ¤ āĻĒā§āϰāϝāĻŧā§āĻāύ āĻšāϝāĻŧ ⧍/ā§Š āĻŦāĻžāϰ āϰāĻŋāĻĒāĻŋāĻ āĻāϰāĻŦā§āύāĨ¤
- * Quant āĻ āϏāĻāϞ āĻāύāĻĢāϰāĻŽā§āĻļāύāĻ āĻĻā§āϝāĻŧāĻž āĻĨāĻžāĻā§, āϤāĻžāĻ āĻŽāύā§āϝā§āĻ, āĻĻāĻŋāϝāĻŧā§ āĻĒā§āϰāĻļā§āύ āĻŦāĻž āĻāĻŋāϤā§āϰ āĻĒāĻĄāĻŧā§āύ, āĻĒā§āϰāϝāĻŧā§āĻāύā§āϝāĻŧ āϤāĻĨā§āϝ āĻā§āĻāĻā§āύāĨ¤
- * Quant comparison āĻ exact āĻŽāĻžāύ āĻŦā§āϰ āĻāϰāĻž āϞāĻžāĻā§ āύāĻž, āĻļā§āϧ⧠āĻŦāĻĄāĻŧ/āĻā§āĻ āĻŦā§āϰ āĻāϰāϤ⧠āĻĒāĻžāϰāϞā§āĻ āĻšā§, āϤāĻžāĻ āĻ āϤāĻŋāϰāĻŋāĻā§āϤ āĻā§āϝāĻžāϞāĻā§āϞā§āĻļāύā§āϰ āĻā§āύ⧠āĻĻāϰāĻāĻžāϰ āύā§āĻāĨ¤
- * āĻāĻŽāĻžāϰ āĻāĻāĻāĻŋ āĻĒāĻāύā§āĻĻā§āϰ āĻā§āĻāύāĻŋāĻ āĻāĻā§ “āĻŽāύ⧠āĻāϰāĻŋ”āĨ¤ āĻāϏāĻŦ āĻā§āώā§āϤā§āϰ⧠āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āĻŽāĻžāύ āĻĻā§āϝāĻŧāĻž āĻĨāĻžāĻā§āύāĻž, āϏā§āϏāĻŦ āĻā§āώā§āϤā§āϰ⧠āĻāĻ āĻā§āĻāύāĻŋāĻāĻāĻŋ āϏāϰā§āĻŦāĻžāĻĒā§āĻā§āώāĻž āĻāĻĒāĻāĻžāϰā§āĨ¤ āϤāĻŦā§ āĻŽāĻžāύ āϧāϰāĻžāϰ āϏāĻŽāϝāĻŧ āĻĒāĻā§āĻāĻŋāĻ, āύā§āĻā§āĻāĻŋāĻ, ā§Ļ, ā§§ āĻāĻŦāĻ āĻĻāĻļāĻŽāĻŋāĻā§āϰ āĻāĻĨāĻž āĻā§āϞāĻŦā§āύ āύāĻžāĨ¤
- * āĻ āϧāĻŋāĻāĻžāĻāĻļ āϏāĻŽāϏā§āϝāĻžāϰ āĻā§āώā§āϤā§āϰ⧠“process of elimination” āĻ āύā§āĻ āĻāĻĒāĻāĻžāϰā§āĨ¤ āĻĒā§āϰāĻļā§āύ⧠āĻĻā§āϝāĻŧāĻž āĻļāϰā§āϤ āĻ āύā§āϏāĻžāϰ⧠āϝā§āϏāĻŦ āĻ āĻĒāĻļāύ āĻā§āϞ⧠āĻšāϤ⧠āĻĒāĻžāϰ⧠āϏā§āĻā§āϞ⧠āϰā§āĻā§ āĻŦāĻžāĻāĻŋ āĻ āĻĒāĻļāύāĻā§āϞ⧠āϏāĻŦ āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧā§ āĻĻāĻŋāύ/āĻā§āĻā§ āĻĻāĻŋāύāĨ¤
- * ets āĻāϰ quant āĻāϰ āύāĻŋāϝāĻŧāĻŽāĻā§āϞ⧠āĻāĻžāϞā§āĻāĻžāĻŦā§ āĻā§āύ⧠āĻ āĻŦā§āĻā§ āύāĻŋāĻŦā§āύ āĻāĻŦāĻ āĻĒāϰā§āĻā§āώāĻžāϰ āϏāĻŽāϝāĻŧ āϏā§āĻā§āϞ⧠āĻā§āϞ⧠āϝāĻžāĻŦā§āύ āύāĻžāĨ¤ āϝā§āĻŽāύ, āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋāϤ⧠āĻāĻŋāϤā§āϰāĻā§āϞ⧠āϏā§āĻā§āϞ āĻ āύā§āϏāĻžāϰ⧠āĻĨāĻžāĻā§āύāĻž, āϤāĻŦā§ āϏā§āĻĨāĻžāύāĻžāĻā§āĻ āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋāϤ⧠āϏā§āĻā§āϞ āĻ āύā§āϏāĻžāϰ⧠āĻĨāĻžāĻā§, āĻāĻŦāĻžāϰ āϰā§āĻ āĻĨāĻžāĻāϞ⧠āĻļā§āϧ⧠āĻĒāĻāĻŋāĻāĻŋāĻ āĻŽāĻžāύāĻāĻžāĻ āĻšāĻŦā§, āύā§āĻā§āĻāĻŋāĻāĻāĻž āύāϝāĻŧ āĻāϤā§āϝāĻžāĻĻāĻŋāĨ¤
- * āϝā§āĻšā§āϤ⧠āύā§āĻā§āĻāĻŋāĻ āĻŽāĻžāϰā§āĻāĻŋāĻ āύā§āĻ āϤāĻžāĻ āĻā§āύ⧠āĻĒā§āϰāĻļā§āύāĻ āĻāĻžāϞāĻŋ āϰā§āĻā§ āĻāϏāĻŦā§āύ āύāĻžāĨ¤ āĻāϰ āϝā§āĻšā§āϤ⧠āĻā§āύ⧠āĻĒā§āϰāĻļā§āύāĻ āĻāĻžāϞāĻŋ āϰā§āĻā§ āĻāϏāĻŦā§āύ āύāĻž āϤāĻžāĻ āϏāĻŽāϝāĻŧā§āϰ āĻĻāĻŋāĻā§ āĻŦāĻžāϰ āĻŦāĻžāϰ āĻā§āϝāĻŧāĻžāϞ āϰāĻžāĻā§āύ āĻāĻŦāĻ āĻŦāĻžāϏāĻžāϝāĻŧ āĻŽāĻĄā§āϞ āĻā§āϏā§āĻ āĻĻā§āϝāĻŧāĻžāϰ āĻāĻŦāĻ āĻļāϞāĻ āĻāϰāĻžāϰ āϏāĻŽāϝāĻŧ āĻĻā§āĻāĻŦā§āύ āϏāĻŽāϝāĻŧā§āϰ āĻŽāϧā§āϝā§āĻ āϏāĻŦ āĻļā§āώ āĻšāϝāĻŧā§āĻā§ āĻāĻŋāύāĻžāĨ¤
āĻĒāϰāĻžāĻŽāϰā§āĻļāĻ
- āĻĒāϰā§āĻā§āώāĻžāϝāĻŧ āĻĻā§āĻāĻž āϝāĻžāϝāĻŧ āϝā§, āĻŽāĻžāϞā§āĻāĻŋāĻĒāϞ āĻāϝāĻŧā§āϏā§āϰ āĻāϤā§āϤāϰ āĻā§āϞāĻžāϰ āĻŽāϧā§āϝ⧠āĻĻā§āĻ āϤāĻŋāύāĻāĻžāĻ āĻĻā§āĻāϤ⧠āϏāĻ āĻŋāĻ/āĻāĻāĻ āĻŽāύ⧠āĻšāϝāĻŧ, āĻĒāĻžāĻāĻāĻāĻŋ answer āĻ āĻĒāĻļāύā§āϰ āĻŽāϧā§āϝ⧠āϤāĻŋāύāĻāĻžāϰ āĻŽāϧā§āϝā§āĻ āĻāϰāĻž āĻā§āϰā§āϝāĻžāĻĒ āϏā§āĻ āĻāϰ⧠āϰā§āĻā§āĻā§, āĻ āĻĨā§āĻā§ āύāĻŋāĻā§āĻā§ āĻāϤā§āϤā§āϰā§āĻŖ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠āĻŦā§āϏā§āĻ āĻšāϝāĻŧ, āĻĒā§āϰā§āϝāĻžāĻāĻāĻŋāϏ āĻāϰ⧠āύāĻŋāĻā§āĻā§ āϝāĻžāĻāĻžāĻ āĻāϰāĻžāϰ āĻŽāĻžāϧā§āϝāĻŽā§ āĻāĻĒāύāĻŋ āύāĻŋāĻā§ āĻā§āύāĻāĻžāϝāĻŧ āĻā§āύāĻāĻžāϝāĻŧ āĻā§āϞ āĻāϰāϤā§āĻā§āύ āĻāĻā§āϞāĻž āĻā§āϰā§āϝāĻžāĻ(note) āĻāϰ⧠āϰāĻžāĻāĻžāĨ¤
- āĻāĻŋāĻāϰāĻ’āϰ āĻāĻŖāĻŋāϤā§āϰ āĻāĻŋāĻāĻŦāĻž āĻā§ā§āĻžāύā§āĻ āϏā§āĻā§āĻļāύā§āϰ āĻāύā§āϝ āĻāĻā§ āĻŦāĻ āĻĨā§āĻā§ āĻĨāĻŋāĻāϰāĻŋ āĻāĻŋāĻāĻŦāĻž āĻŦā§āϏāĻŋāĻ Concept/āĻāĻāĻĄāĻŋā§āĻž āύāĻŋā§ā§ āύāĻŋāϤ⧠āĻšāĻŦā§. āϤāĻžāϰāĻĒāϰ āĻāϰāϤ⧠āĻšāĻŦā§ āϏāĻŽāϏā§āϝāĻž āϏāĻŽāĻžāϧāĻžāύā§āϰ āĻāĻžāĻ āϝāĻž āĻĒā§āϰā§āϝāĻžāĻāĻāĻŋāϏ āĻāϰ āĻŽāĻžāϧā§āϝāĻŽā§ āĻāĻžāϞāĻŋāϝāĻŧā§ āϝā§āϤ⧠āĻšāĻŦā§.
- āϤāĻžāϰāĻĒāϰ āĻāϏ⧠āĻāĻŋ āĻāϰ⧠āĻĻā§āϰā§āϤ āĻāĻŦāĻ āĻ āϞā§āĻĒ āϏāĻŽā§ā§āϰ āĻŽāϧā§āϝ⧠āĻāĻŖāĻŋāϤā§āϰ āϏāĻŽāϏā§āϝāĻžāĻā§āϞ⧠āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§āĨ¤ āĻāĻŋāĻāϰāĻ’āϰ āĻāύā§āϝ āĻāĻāĻāĻŋ āĻļāϰā§āĻāĻāĻžāĻ āĻŽā§āϝāĻžāĻĨ āĻŦāĻ āϝā§āĻŽāύ- Rapid Quantitative Aptitude – With Shortcuts & Tricks for Competitive Exams by Disha Experts. āĻļāϰā§āĻāĻāĻžāĻ āĻĻāϰāĻāĻžāϰ āĻāĻā§ āϏāϤā§āϝ āĻāĻŋāύā§āϤ⧠āϤāĻžāϰ āĻĨā§āĻā§ āĻŦā§āĻļāĻŋ āϏāϤā§āϝ āĻāĻŽāĻžāĻĻā§āϰ āύāĻŋāĻā§āĻĻā§āϰ āĻāĻŖāĻŋāϤā§āϰ āĻā§āϝāĻžāϞāĻā§āϞā§āĻļāύ āϏā§āĻĒāĻŋāĻĄ āĻŦāĻžā§āĻžāύā§.
Topic: Basic Math Terms & Symbols – āĻŦāĻŋāĻāĻŋāύā§āύ āĻŽā§āϝāĻžāĻĨ āĻāĻžāϰā§āĻŽ āĻ āĻāĻŋāĻšā§āύ
- digit = = āĻ āĻā§āĻ / āϏāĻāĻā§āϝāĻž(āĻĒā§āϰāϤā§āĻ)[āĻāϞāĻžāĻĻāĻžāĻāĻžāĻŦā§]
- number = āϏāĻāĻā§āϝāĻž[āĻāĻāϤā§āϰ]
- prime number = āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž
- Integer = āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž
- mix number = āĻŽāĻŋāĻļā§āϰ āϏāĻāĻā§āϝāĻž
- Decimal = āĻĻāĻļāĻŽāĻŋāĻ (āϏāĻāĻā§āϝāĻž)
- Consecutive number = āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ āϏāĻāĻā§āϝāĻž
- Ratio â āĻ āύā§āĻĒāĻžāϤ
- Velocity â āĻŦā§āĻ
- Factor â āĻā§āĻĒāĻžāĻĻāĻ
- fraction = āĻāĻā§āύāĻžāĻāĻļ(āĻĒā§āϰāĻā§āϤ)
- Improper fraction = āĻ āĻĒā§āϰāĻā§āϤ āĻāĻā§āύāĻžāĻāĻļ
- numerator = āϞāĻŦ
- denominator = āĻšāϰ
- Even = āĻā§ā§
- Odd = āĻŦāĻŋāĻā§ā§
- adding = āϝā§āĻ [āϝā§āĻāĻĢāϞ(sum)]
- substracting/ deducting = āĻŦāĻŋā§ā§āĻ [āĻŦāĻŋā§ā§āĻāĻĢāϞ(Difference)]
- multipling/multiply = āĻā§āĻŖ [āĻā§āĻŖāĻĢāϞ(product)]
- devisor (āĻāĻžāĻāĻ)
- dividend (āĻāĻžāĻā§āϝ)
- deviding = āĻāĻžāĻ [āĻāĻžāĻāĻĢāϞ(Quotient)]
- remainder = āĻāĻžāĻāĻļā§āώ
- sum(of),
- add, plus, combined, total, all,
- and
- more than, increase, etc
āĻŦāĻŋā§ā§āĻāĻĢāϞ(Difference)# āĻ āĻāĻā§āϰ āĻŽāϧā§āϝ⧠āϝā§āϏāĻŦ Word āĻā§āϞ⧠āĻĨāĻžāĻāϞ⧠āĻāĻŽāϰāĻž āĻŦāĻŋā§ā§āĻ āĻāϰāĻŦā§:-
- substracting,
- deducting
- multiplied by
- of, product of
- twice, thrice
- double, triple
- half, one third, two thirds
- times, times as much, etc
āĻāĻžāĻāĻĢāϞ(Quotient)# āĻ āĻāĻā§āϰ āĻŽāϧā§āϝ⧠āϝā§āϏāĻŦ Words āĻā§āϞ⧠āĻĨāĻžāĻāϞ⧠āĻāĻŽāϰāĻž āĻāĻžāĻ āĻāϰāĻŦā§?:-
- deviding
- equals, is, is the same as
- has, was, will, be
- costs
- adds up to
- results, etc
āĻāĻŋāĻšā§āύ – Symbol & Meaning list:-
- ‘”='” (equals sign [āϏāĻŽāĻžāύ])
- “⠔ (is not equal to sign[āĻ āϏāĻŽāĻžāύ])
- “~” (is similar to (āĻ āύā§āϰā§āĻĒ) // used for mathematical relations)
- “â” ( “is congruent to(āϏāϰā§āĻŦāϏāĻŽ) / approximately equal / ALMOST EQUAL TO”, is for numerical data, homeomorphism) like đâ3.14
- “â” (ASYMPTOTICALLY EQUAL TO/ is for homotopy equivalence)
- “⊰”  (APPROXIMATELY EQUAL TO)
- “â ” (is for isomorphism, congruence, etc, // often used in modular arithmetic to state a congruence relation)
- “â” (used for “is defined as”)
- “⥔ (used for equivalence)
- Âą (Plus or minus[āϝā§āĻ āĻŦāĻž āĻŦāĻŋā§ā§āĻ])
- “||” (parallel to[āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ])
- âĨ (is perpendicular[āϞāĻŽā§āĻŦ])
- |x| (Absolute value of x)
#
- L.H.S. left hand side of an equation or inequality (āĻŦāĻžāĻŽāĻĒāĻā§āώ)
- R.H.S. right hand side of an equation or inequality (āĻĄāĻžāύāĻĒāĻā§āώ)
- “<” {L.H.S. is less than R.H.S (āĻā§āĻ)}
- “>” {L.H.S. is greater than R.H.S (āĻŦā§)}
- ⤠(L.H.S. is less than or equal R.H.S[āĻā§āĻ āĻŦāĻž āϏāĻŽāĻžāύ])
- âĨ (L.H.S. is greater than or equal R.H.S āĻŦā§ āĻŦāĻž āϏāĻŽāĻžāύ])
Exponent: Exponent 2Âŗ means 2x2x2 = 8
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻāĻŖāĻžāϤā§āĻŽāĻ āϝā§āĻā§āύ⧠(āĻā§ā§/āĻŦāĻŋāĻā§ā§)āϏāĻāĻā§āϝāĻžāϰ, āĻŦāĻŋāĻā§ā§ āϏāĻāĻā§āϝāĻ Exponent āĻāϰāϞā§Â = āĻāĻŖāĻžāϤā§āĻŽāĻ āĻšā§āĨ¤ āĻŦāĻžāĻāĻŋāϏāĻŦ āĻā§āώā§āϤā§āϰ⧠āϧāύāĻžāϤā§āĻŽāĻ āĻšāϝāĻŧāĨ¤
(2)² = 4 (2×2)
(-2)² = 4 (-2 x -2)
(2)Âŗ = 8 (2x2x2)
(-2)Âŗ = -8 (-2 x -2 x -2)
(-3)² = 9 (-3 x -3)
(-3)Âŗ = -27 (-3 x -3 x -3)
Root: 2 = â4 āĻŦāĻž, 2² = 4 (āĻāĻāĻž āĻ āύā§āĻāĻāĻž exponent āĻāϰ āĻāϞā§āĻā§)
Factorial: āĻā§āύ āϏāĻāĻā§āϝāĻžāϰ āĻĢā§āϝāĻžāĻā§āĻā§āϰāĻŋāϝāĻŧāĻžāϞ āĻŦāϞāϤ⧠āĻŦā§āĻāĻžāϝāĻŧ ā§§ āĻĨā§āĻā§ āĻļā§āϰ⧠āĻāϰ⧠āĻ āϏāĻāĻā§āϝāĻž āĻĒāϰā§āϝāύā§āϤ āĻĒā§āϰāϤā§āϝā§āĻāĻāĻŋ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āϰāĻŽāĻŋāĻ āĻā§āĻŖāĻĢāϞāĨ¤
āϝā§āĻŽāύāĻ 5! = 1 x 2 x 3 x 4 x 5 = 120
āĻĢā§āϝāĻžāĻā§āĻā§āϰāĻŋāϝāĻŧāĻžāϞ āĻĒā§āϰāϝā§āĻā§āϝ āĻā§āĻŦāϞ āĻŽāĻžāϤā§āϰ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ {N} āĻāύā§āϝāĨ¤ āĻāĻā§ āĻāĻļā§āĻāϰā§āϝāĻŦā§āϧāĻ āĻāĻŋāĻšā§āύ (!) āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšāϝāĻŧāĨ¤
Imaginary nummber: i2 = â1 āĻŦāĻž â-1 = i. āϝā§āĻŽāύ- 3i, 7i, -2i, âi
- i = â-1
- i2Â = -1
- i3Â = -i
- i4Â = +1
- i4n = 1
- i4n-1= -i etc
Topic: Basic operations (Even, Odd, Multiply, Division)
Order of Operations: (PEMDAS āĻŦāĻž BODMAS)
- Parenthesis (brackets)
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
ā§Š āĻ ā§Ē āύāĻ āĻ PEMDAS rule āĻ āĻĻā§āĻā§ āĻĻā§āĻā§ āĻāϰ⧠āĻāĻāϏāĻžāĻĨā§ āϞāĻŋāĻāĻžāϰ āĻāĻžāϰāĻŖ-
- āĻāĻā§ ‘āĻāĻžāĻ’, āĻĒāϰ⧠‘āĻā§āĻŖ’ āĻāĻŽāύ āĻā§āύ⧠āύāĻŋā§āĻŽ āĻāϏāϞ⧠āύāĻžāĻāĨ¤ āϝā§āĻ āĻāĻā§, āĻŦāĻŋā§ā§āĻ āĻĒāϰ⧠āĻāĻŽāύ āĻā§āύ⧠āĻāĻĨāĻž āύāĻžāĻāĨ¤
- ā§§. āϝ⧠āĻ āĻĒāĻžāϰā§āĻļāύā§āϰ āĻ āĻā§āϰāĻžāϧāĻŋāĻāĻžāϰ āĻŦā§āĻļāĻŋ, āϤāĻžāĻā§ āĻāĻā§ āĻšāĻŋāϏā§āĻŦ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤
- ⧍. āϝāĻĻāĻŋ āĻāĻāĻ āĻ āĻā§āϰāĻžāϧāĻŋāĻāĻžāϰā§āϰ āĻ āύā§āĻāĻā§āϞ⧠āĻ āĻĒāĻžāϰā§āĻļāύ āĻĨāĻžāĻā§ āϤāĻžāĻšāϞ⧠âāĻŦāĻžāĻŽ āĻĨā§āĻā§ āĻĄāĻžāύā§â āĻšāĻŋāϏā§āĻŦ āĻāϰāϤ⧠āĻšāĻŦā§
6Ãˇ2(1+2)
#
13-5+3-2+2
= 13+3+2-5-2
= 18-7
= 11
Even numbers(āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž): end with 0, 2, 4, 6, 8 (those numbers that are completely divisible by 2)
0 is even because 0 = (2 à 0) + 0
* General formula for Even Number: 2n (n is integer)
Odd Numbers(āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž): end with 1, 3, 5, 7, 9
1 is odd because 1 = (2 Ã 0) + 1
* General formula for Odd Number: 2n-1Â (n is integer)
# Even āĻāĻŦāĻ Odd āϏāĻāĻā§āϝāĻžāϰ, āϝā§āĻā§āϰ āύāĻŋā§āĻŽ:- (Even = āĻā§ā§, Odd = āĻŦāĻŋāĻā§ā§)
- Even + Even = Even (4+6 =20) (āĻā§ā§+āĻā§ā§=āĻā§ā§)
- Odd + Odd = Even (3+3=6)   (āĻŦāĻŋāĻā§ā§+āĻŦāĻŋāĻā§ā§=āĻā§ā§)
- Even + Odd = Odd (2+3=5)   (āĻā§ā§+āĻŦāĻŋāĻā§ā§=āĻŦāĻŋāĻā§ā§),
- Odd + Even = Odd (3+2=5)
āĻāĻŦāĻžāϰ,
- āĻā§ā§+āĻŦāĻŋāĻā§ā§+āĻŦāĻŋāĻā§ā§= āĻā§ā§,
- āĻŦāĻŋāĻā§ā§+āĻā§ā§+āĻā§ā§=āĻŦāĻŋāĻā§ā§,
- āĻŦāĻŋāĻā§ā§+āĻŦāĻŋāĻā§ā§+āĻŦāĻŋāĻā§ā§=āĻŦāĻŋāĻā§ā§,
- āĻā§ā§+āĻā§ā§+āĻā§ā§=āĻā§ā§
# Even āĻāĻŦāĻ Odd āϏāĻāĻā§āϝāĻžāϰ, āĻā§āύā§āϰ āύāĻŋā§āĻŽ:- (Even = āĻā§ā§, Odd = āĻŦāĻŋāĻā§ā§)
- Even X Even = Even (2×2=4)
- Odd x Odd = Odd (3×5=15)
- Even X Odd = Even (2×3=6)
- Odd X Even = Even (3×2=6)
- The product of an even number of negative factors is positive. āĻāĻĻāĻž-ā§§: [(-1)(-1)=1]  āĻāĻĻāĻž-⧍: [(-1)( -1)( -1)(-1)=1;
- The product of an odd number of negative factors is negative. āĻāĻĻāĻž-ā§§: ((-1)(-1)( -1)= -1; āĻāĻĻāĻž-⧍: (-1)(-1) (-1)(-1) (-1)= -1]
āĻā§āύā§āϰ āĻāĻŋāĻšā§āύāĻā§āϞā§-
āĻāĻžāĻā§āϰ āĻāĻŋāĻšā§āύāĻā§āϞā§-
# Practice:
1. Arithmatic
Topics: Real Numbers:,|| Basic operations: Odd, Even,Mutiply,Division || Consecutive numbers || Factors, Multiples || Divisibility || Prime Numbers, || HCF and LCM
Topic: Number(āϏāĻāĻā§āϝāĻž):
Digit (āĻ āĻā§āĻ / āĻĒāĻžāĻāĻŋāĻāĻŖāĻŋāϤā§āϰ āĻĒā§āϰāϤā§āĻ): 0,1,2,3,4,5,6,7,8,9 (1,2,3,4,5,6,7,8,9 āĻĒāϰā§āϝāύā§āϤ āĻāĻ āύā§āĻāĻŋāĻā§ āĻŦāϞāĻž āĻšā§ āϏāĻžāϰā§āĻĨāĻ āĻ āĻā§āĻ)
Number (āϏāĻāĻā§āϝāĻž / āĻ āĻā§āĻāĻĒāĻžāϤāύ / āĻĻāĻļ āĻā§āĻŖā§āϤā§āϤāϰ āϰā§āϤāĻŋ): Example- 543, 435 etc
āϏā§āĻĨāύā§ā§ āĻŽāĻžāύ āĻ āϏā§āĻŦāĻā§ā§ āĻŽāĻžāύ āĻāϰ āĻĒāĻžāϰā§āĻĨāĻā§āϝāĻ
āϏā§āĻĨāύā§ā§ āĻŽāĻžāύāĻ 346 āϏāĻāĻā§āϝāĻžāĻāĻŋāϤā§- 3 āĻāϰ āϏā§āĻĨāĻžāύā§ā§ āĻŽāĻžāύ 300, 4 āĻāϰ āϏā§āĻĨāĻžāύā§ā§ āĻŽāĻžāύ 40, 6 āĻāϰ āϏā§āĻĨāĻžāύā§ā§ āĻŽāĻžāύ 600āĨ¤ āĻāĻāĻžāĻŦā§ āĻāϰ⧠āϞāĻŋāĻāĻž āĻšā§āĨ¤
āϏā§āĻŦāĻā§ā§ āĻŽāĻžāύāĻ 346 āϏāĻāĻā§āϝāĻžāĻāĻŋāϤā§- 3 āĻāϰ āϏā§āĻĨāĻžāύā§ā§ āĻŽāĻžāύ 3 āĻ āĻĨāĻžāĻāĻŦā§, 4 āĻāϰ āϏā§āĻĨāĻžāύā§ā§ āĻŽāĻžāύ 4 āĻ āĻĨāĻžāĻāĻŦā§,63 āĻāϰ āϏā§āĻĨāĻžāύā§ā§ āĻŽāĻžāύ 6 āĻ āĻĨāĻžāĻāĻŦā§āĨ¤
āĻĻā§āĻļā§ā§ āĻāĻŖāύāĻž āĻĒāĻĻā§āϧāϤāĻŋ āĻ āĻāύā§āϤāϰā§āĻāĻžāϤāĻŋāĻ āĻāĻŖāύāĻž āĻĒāĻĻā§āϧāϤāĻŋ āĻāϰ āϏāĻŽā§āĻĒāϰā§āĻāĻ ā§§ āĻŽāĻŋāϞāĻŋā§āύ = ā§§ā§Ļ āϞāĻā§āώāĨ¤ ā§§ āĻŦāĻŋāϞāĻŋā§āύ = ā§§ā§Ļā§Ļ āĻā§āĻāĻŋāĨ¤
āĻĻā§āĻļā§ā§ āĻāĻŖāύāĻž āĻĒāĻĻā§āϧāϤāĻŋāĻ āĻā§āĻāĻŋ, āύāĻŋāϝā§āϤ, āϞāĻā§āώ, āĻ āϝā§āϤ, āĻšāĻžāĻāĻžāϰ, āĻļāϤāĻ, āĻĻāĻļāĻ, āĻāĻāĻ
āĻāύā§āϤāϰā§āĻāĻžāϤāĻŋāĻ āĻāĻŖāύāĻž āĻĒāĻĻā§āϧāϤāĻŋāĻ
Worth to memorize: 1 mil- six zeroes, 1 bil- 9 zeroes, 1 trillion- 12 zeroes.
āĻā§āϝāĻžāϞāĻā§āϞā§āĻļāύā§āϰ āĻļāϰā§āĻāĻāĻžāĻ āύāĻŋā§āĻŽ āĻāĻžāύāϤ⧠āĻšāĻŦā§-
āϝā§āĻŽāύ- 0.1×0.1=0.01
Topic: Real number(āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻž):
- Integers(āĻāύāĻāĻŋāĻāĻžāϰ)/Number System: Z = {…, -3, -2, -1, 0, 1, 2, 3, …}
- Whole numbers(āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž): W = {0, 1, 2, 3, ..}
- Natural/Counting numbers(āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻž): N = {1, 2, 3, …}
- Consecutive number(āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ/āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž): 1,2,3…āĻŦāĻž 3,5,7,9…..etc
- Rational numbers(āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻž): Q = {-3, 0, -6, 5/6, 3.23} [āϝ⧠numberāĻā§āϞā§āĻā§ fraction āĻāĻāĻžāϰ⧠āϞāĻŋāĻāĻž āϝāĻžā§]
- Irrational numbers(āĻ āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻž): Q¯= {â2, -â6, Ī=3.14….} [āϝ⧠numberāĻā§āϞā§āĻā§ fraction āĻāĻāĻžāϰ⧠āϞāĻŋāĻāĻž āϝāĻžā§ āύāĻž āĻ āĻĻā§āĻāĻŋ integer a āĻ b āĻāϰ ratio āĻāĻāĻžāϰ⧠āϞāĻŋāĻāĻž āϝāĻžā§ āύāĻž]
Integer(āĻāύāĻāĻŋāĻāĻžāϰ): Z = {âĻ.-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,âĻ}
Positive, Negetive āĻšāϤ⧠āĻĒāĻžāϰā§, āĻāĻŋāύā§āϤ⧠Fraction(āĻāĻā§āύāĻžāĻāĻļ), Decimal(āĻĻāĻļāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž) āϏāĻāĻā§āϝāĻž āύā§āĨ¤ āϝā§āĻŽāύ- 0, -2, 7 etc.
Zero: Integer, even number, Not +, Not – , non prime, non composite number, Zero is a multiple of every integers but is not a factor(the only number that zero can be a factor of is zero)
Non-Negative Integer: { 0, 1, 2, 3,………. }
Non-Positive Integer: {…….,- 3 , – 2 , – 1 , 0Â }
Positive Numbers(āϧāύāĻžāϤā§āĻŽāĻ āϏāĻāĻā§āϝāĻž): {1,2,3,4,5,…..}
Negative Numbers(āĻāĻŖāĻžāϤā§āĻŽāĻ āϏāĻāĻā§āϝāĻž): {…..,-4, -3, -2,-1}
positive + positive = positive. [6+3=9]
(negative) + (negative) = negative. [(-6)+(-2)= -8]
Positive à Positive = Positive [3×5 = 15]
Positive à Negative= Negative [(3x (-5) = -15]
Negative à Negative = Positive [-3) à (-5) = 15]
Positive Ãˇ Positive = Positive [6Ãˇ3 = 2]
Positive Ãˇ Negative= Negative [(6Ãˇ (-3) = -2]
Negative Ãˇ Negative = Positive [(- (6) Ãˇ (-3) = 2]
* Positive āĻŦāĻž Negative āύāĻžāĻŽā§āĻŦāĻžāϰ āĻā§ āĻŦāϰā§āĻ(square) āĻāϰāϞ⧠positive āύāĻžāĻŽā§āĻŦāĻžāϰ-āĻ āĻĒāĻžāĻā§āĻž āϝāĻžā§āĨ¤
* Negative Number āĻāϰ āĻā§āύ⧠root(āĻŦāϰā§āĻāĻŽā§āϞ) āύā§āĻāĨ¤
Whole Number(āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž), W = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10âĻâĻ}
Counting starts from 0 (It include natural numbers (that begin from 1 onwards), along with 0)
Natural/Counting Numbers (āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻž): N = {1, 2, 3, 4, 5, 6, 7, 8, 9,âĻ}
Counting starts from 1
āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻž(Rational Number): āĻšāĻā§āĻā§ āϏā§āĻ āϏāĻāĻ˛Â āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻžÂ āϝāĻžāĻĻā§āĻ°Â (āĻāĻā§āύāĻžāĻāĻļ) āĻāĻāĻžāϰ⧠āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āϝāĻžāϝāĻŧ, āϝā§āĻāĻžāύ⧠p āĻāĻŦāĻ q āĻāĻāϝāĻŧ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž, p āĻ q āϏāĻšāĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž āĻāĻŦāĻ qâ 0
*** āϏāĻāϞ āĻĒā§āϰā§āĻŖāϏāĻāĻā§āϝāĻž, āĻāĻā§āύāĻžāĻāĻļ(+āĻĒā§āύāĻāĻĒā§āύāĻŋāĻ āĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻāĻā§āϝāĻž)-āĻ āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻžāĨ¤Â
āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻž āĻĒā§āϰāĻāĻžāĻļā§āϰ āĻĒā§āϰāĻāĻžāϰāĻā§āĻĻ-
- āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž: āϝā§āĻŽāύ- 3 āĻŦāĻž 3/1 āĻŦāĻž â9 , 12, 34 etc
- āĻāĻā§āύāĻžāĻāĻļ[/Fractions]: (1.āĻĻāĻļāĻŽāĻŋāĻ[/Decimal], āϝā§āĻŽāύ- , ,
(2.āĻĒā§āύāĻāĻĒā§āύāĻŋāĻ[recurrent] āĻĻāĻļāĻŽāĻŋāĻ / āϏāϏā§āĻŽ āĻĻāĻļāĻŽāĻŋāĻ, āϝā§āĻŽāύ- 5/3=1.666, ā§§.ā§Ŧā§Šā§Ŧā§Šā§Ŧā§Šā§Ŧā§Šā§Ŧā§Š), ),
(3.āĻ āύā§āĻĒāĻžāϤ[/ratio],āϝā§āĻŽāύ- )
āĻ
āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻž(Irrational Number): āϝā§āϏāĻŦ āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻžāĻā§ Â (āĻāĻā§āύāĻžāĻāĻļ) āĻāĻāĻžāϰ⧠āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āϝāĻžāϝāĻŧ āύāĻž, āϤāĻžāĻĻā§āϰ āĻ
āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻž āĻŦāϞā§āĨ¤ // āϝā§āϏāĻŦ āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻž āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻž āύāϝāĻŧ, āĻ
āϰā§āĻĨāĻžā§ āϝāĻžāĻĻā§āϰāĻā§ āĻĻā§āĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻ
āύā§āĻĒāĻžāϤ āĻšāĻŋāϏā§āĻŦā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āϝāĻžāϝāĻŧ āύāĻž āϤāĻžāĻĻā§āϰāĻā§ āĻŦāϞāĻž āĻšāϝāĻŧ āĻ
āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻžāĨ¤ āϝā§āĻŽāύ- =1.41421356237âĻ, , Ī, e=2.71…., â9/7=3/â7 etc.
*** āĻāϰāĻž āĻ
āϏā§āĻŽ āĻ
āύāĻžāĻŦā§āϤ / āĻĒā§āϰā§āύāĻŦāϰā§āĻ āύ⧠āĻāϰā§āĻĒ āϝā§āĻā§āύ⧠āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞ āĻŦāĻž āĻŦāϰā§āĻāĻŽā§āϞā§āϰ āĻāĻā§āύāĻžāĻāĻļ-āĻ āĻ
āĻŽā§āϞāĻĻ āϏāĻāĻā§āϝāĻžāĨ¤Â
Topic: Consecutive number(āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ/āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž):
āϝā§āĻā§āύ⧠āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āĻŦā§āϝāĻŦāϧāĻžāύ āĻĨāĻžāĻā§āĨ¤ āĻāĻ āĻŦā§āϝāĻŦāϧāĻžāύ āĻā§ā§/āĻŦāĻŋāĻā§ā§/āϧāύāĻžāϤā§āĻŽāĻ/āĻāĻŖāĻžāϤā§āĻŽāĻ āϝā§āĻā§āύ⧠āϏāĻāĻā§āϝāĻžāϰ āĻā§āϰāĻŽāĻŋāĻ āĻšāϤ⧠āĻĒāĻžāϰā§āĨ¤ āϝā§āĻŽāύ-
even consecutive integer[āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ āĻā§ā§ āϏāĻāĻā§āϝāĻž/ āĻā§āϰāĻŽāĻŋāĻ āĻā§ā§]:
- 2, 4, 6 (āĻŦā§āϝāĻŦāϧāĻžāύāĻ ā§¨)
- -6,-8,-10 (āĻŦā§āϝāĻŦāϧāĻžāύāĻ ā§¨) etc
odd consecutive integer[āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ āĻŦāĻŋāĻā§ā§ āϏāĻāĻā§āϝāĻž / āĻā§āϰāĻŽāĻŋāĻ āĻā§ā§]:
- 1, 5, 3 (āĻŦā§āϝāĻŦāϧāĻžāύāĻ ā§¨)
- 9, 11, 13 (āĻŦā§āϝāĻŦāϧāĻžāύāĻ ā§¨)
- 21, 23, 25 (āĻŦā§āϝāĻŦāϧāĻžāύāĻ ā§¨)
- 10,13,16 (āĻŦāĻŋāĻā§ā§ āĻŦā§āϝāĻŦāϧāĻžāύāĻ ā§Š) etc
Positive consecutive (āϧāύāĻžāϤā§āĻŽāĻ āĻā§āϰāĻŽāĻŋāĻ): 1, 5, 3 (āĻŦā§āϝāĻŦāϧāĻžāύāĻ ā§¨)
Negative consecutive (āĻāĻŖāĻžāϤā§āĻŽāĻ āĻā§āϰāĻŽāĻŋāĻ): -1, -5, -3 (āĻŦā§āϝāĻŦāϧāĻžāύāĻ ā§¨)
# āĻŽāύ⧠āϰāĻžāĻāĻŦā§—
*** When each number is 1 greater than the previous number, then consecutive number formula: n, n+1, n+2, n+3……etc (āĻŦā§āϝāĻŦāϧāĻžāύāĻ ā§§)
āĻŦā§āϝāĻŦāϧāĻžāύ ā§§ āĻāĻā§ āĻāϰāĻāĻŽ āϏāĻŋāĻā§ā§ā§āύā§āϏāĻā§āϞ⧠āĻšāĻā§āĻā§:(n āĻāϰ āĻŽāĻžāύ āĻāĻā§āĻā§āĻŽāϤ āϝā§āĻŽāύ 1 āĻŦāĻž 5 āĻŦāϏāĻŋā§ā§ āĻā§āĻ āĻāϰāϤ⧠āĻĒāĻžāϰāĻŦā§)-
- (n, n+1, n+2) [āĻāĻā§āώā§āϤā§āϰā§, n=5 āĻŦāϏāĻžāϞ⧠āĻšā§ 5x6x7]  āĻāϰāĻāĻŽāĻāĻžāĻŦā§ (n+3).(n+4).(n+5), āĻāĻŦāĻžāϰ⧠(n+4).(n+5)(n+6);..;…etc
- (n-1).n.(n+1)   [āĻāĻā§āώā§āϤā§āϰā§, n=5 āĻŦāϏāĻžāϞ⧠āĻšā§ 4x5x6]
- (n-4).(n-3).(n-2) [āĻāĻā§āώā§āϤā§āϰā§, n=5 āĻŦāϏāĻžāϞ⧠āĻšā§ 1x2x3]
*** When each number is 2 greater than the previous number, then consecutive number formula: n, n+2, n+4……etc (āĻŦā§āϝāĻŦāϧāĻžāύāĻ ā§¨)
*** āĻŽāύ⧠āϰāĻžāĻāĻŦā§, āϤāĻŋāύāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻĢāϞ āϏāϰā§āĻŦāĻĻāĻžāĻ ā§¨ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤
āĻŦā§āϝāĻžāĻā§āϝāĻžāĻ āϤāĻŋāύāĻāĻŋ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻŽāϧā§āϝ⧠āĻāĻŽāĻĒāĻā§āώ⧠āĻāĻāĻāĻŋ āĻā§ā§ āϏāĻāĻā§āϝāĻž āĻĨāĻžāĻāĻŦā§āĻāĨ¤ āĻāĻāύā§āϝ āϤāĻŋāύāĻāĻŋ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻĢāϞ āĻ
āĻŦāĻļā§āϝāĻ ā§¨ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšāĻŦā§āĨ¤ āϝā§āĻŽāύ: āϤāĻŋāύāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž ā§Ģ, ā§Ŧ, ā§ āĻāĻĻā§āϰ āĻā§āĻŖāĻĢāϞ = ā§Ģ à ā§Ŧ Ã ā§ = ⧍⧧ā§Ļ āϝāĻž ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšā§āĨ¤
*** āĻāĻāĻāĻāĻžāĻŦā§, any three consecutive integers is divisible by 3! āĻ āϰā§āĻĨāĻžā§ āϤāĻŋāύāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšāĻŦā§āĨ¤
**** āĻāĻāĻāĻāĻžāĻŦā§, āϤāĻŋāύāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻĢāϞ āϏāϰā§āĻŦāĻĻāĻž 6 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤
āĻŦā§āϝāĻžāĻā§āϝāĻžāĻ n-āĻāϰ āĻāĻžāϝāĻŧāĻāĻžāϝāĻŧ āϝā§āĻā§āύ⧠āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻž āĻŦāϏāĻžāϞā§, āĻā§āĻŖāĻĢāϞāĻāĻŋ 6 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšāĻŦā§āĨ¤
āĻā§āĻŖāĻĢāϞ āĻšāĻŦā§ = n(n + 1)(n + 2) = n3 + 3n2 + 2n
**** āĻāĻāĻāĻāĻžāĻŦā§, āĻĒāĻžāĻāĻāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻĢāϞ āϏāϰā§āĻŦāĻĻāĻž 20 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤
——
āĻāĻŦāĻžāϰ, āϤāĻŋāύāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āĻā§ā§ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻĢāϞ/āϝā§āĻāĻĢāϞ ⧍, ā§Ŧ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤ [4,12,15 āĻāĻā§āϞ⧠āύā§]
Practice:
# Question: If n is an integer greater than 6, which of the following must be divisible by 3?
A. n(n+1)(nâ4)
B. n(n+2)(nâ1)
C. n(n+3)(nâ5)
D. n(n+4)(nâ2)
E. n(n+5)(nâ6)
Solution1:
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, any three consecutive integers is divisible by 3! āĻ āϰā§āĻĨāĻžā§ āϤāĻŋāύāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ(divisible)āĨ¤
ā§Š āϏāĻāĻā§āϝāĻžāϰ āĻā§āϰāĻŽāĻŋāĻ āĻĒā§āϝāĻžāĻāĻžāϰā§āύ āĻā§āϞ⧠āĻšāĻā§āĻā§āĻ n.(n+1).(n+2), (n+2)(n+3)(n+4),….. etc āĻ
āĻĨāĻŦāĻž (n-1).n.(n+1), (nâ7)(nâ6)(nâ5),….. etc āϝā§āĻā§āύ⧠āĻāĻŋāĻā§āĨ¤
{āĻā§āύāύāĻž n āĻāϰ āϝā§āĻā§āύ⧠āĻŽāĻžāύ āϝā§āĻŽāύ n=5 āĻŦāϏāĻŋā§ā§ n.(n+1).(n+2)=5x6x7 āϝāĻž āĻāĻāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž, (n+2)(n+3)(n+4)=7x8x9 āϝāĻž āĻāĻāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž….etcāĨ¤
āĻāĻāĻāĻāĻžāĻŦā§, n=5 āĻŦāϏāĻŋā§ā§ (n-1).n.(n+1)=4x5x6 āϝāĻž āĻāĻāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž, (nâ7)(nâ6)(nâ5) = -2 x -1 x 0 āϝāĻž āĻāĻāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž……etc}
āĻāϰ, āĻā§āϰāĻŽāĻŋāĻ āĻĒā§āϝāĻžāĻāĻžāϰā§āύ āĻā§ā§āĻž āĻā§āϞā§āϰ āĻŽāϧā§āϝ⧠āĻ
āĻŦāϏā§āĻĨāĻžāύā§āϰ āĻŽāĻžāύā§āϰ āĻĒāϰāĻŋāĻŦāϰā§āϤāύ āĻāϰāϞā§āĻ ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ(divisible) āĻšā§āĨ¤ āϝā§āĻŽāύ- 5x6x7 āĻāϰ 5 āĻāϰ āĻāĻžā§āĻāĻžā§ 7 āĻŦāϏāĻžāϞā§āĻ 3 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ(divisible) āĻšā§āĨ¤
āĻā§āϰāĻŽāĻŋāĻ āĻĒā§āϝāĻžāĻāĻžāϰā§āύ āϏāĻšāĻā§ āĻŦā§āĻāϤ⧠āĻāĻ āĻāĻ āĻĻā§āĻāϤ⧠āĻĒāĻžāϰ- (nâ7)(nâ6)(nâ5)(nâ4)(nâ3)(nâ2)(nâ1)n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)Â
āĻāĻā§āώā§āϤā§āϰā§,āĻĒā§āϝāĻžāĻāĻžāϰā§āύāĻā§āϞāĻžāϤ⧠(n-1) āĻŦāĻž (n+2) āĻŦāĻž (nâ4) āĻāĻāĻ āĻāĻŋāύāĻŋāϏ āĻŦāϞāĻž āϝāĻžā§, āĻāĻžāϰāĻŖ āϤāĻžāϰāĻž āĻāϰāĻž āĻĒā§āϰāϤā§āϝā§āĻā§āĻ āϤāĻžāĻĻā§āϰ āĻā§āϰāĻŽāĻŋāĻ āĻā§ā§āĻž āĻā§āϞā§āϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻžāϰā§āĻāĨ¤
āϤ⧠āĻĒā§āϰāĻļā§āύ āĻĨā§āĻā§ āĻĻā§āĻāĻžāĻ āϝāĻžāĻā§āĻā§, (nâ4).n.(n+1) āĻšāĻā§āĻā§ āĻāĻāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž āĻĒā§āϝāĻžāĻāĻžāϰā§āύ, āĻāϰ āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ-āϤāĻŋāύāĻāĻŋ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ(divisible)āĨ¤ āϤāĻžāĻ āĻ āĻĒāĻļāύ A āĻ āĻšāĻŦā§ āύāĻŋāϰā§āĻŖā§ā§ āĻāϤā§āϤāϰāĨ¤
If we have 3 consecutive numbers such as n, (n+1), (n+2), we know for sure that at least one of them is divisible by 3.
given numbers such as (n-1)*n*(n+1), we know that the product is divisible by 3.
# Solution2:
3 āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āϝā§āϤ⧠āĻšāĻŦā§ āĻāĻŽāύ, n āĻāϰ āĻŽāĻžāύ āϝāĻž 6 āĻĨā§āĻā§ āĻŦā§ āϏāĻāĻā§āϝāĻžāĻā§āϞāĻž Test āĻāϰāĻŋāĨ¤ āϤāĻžāĻ, 7 āĻ 8 āĻŦāϏāĻŋā§ā§ value āĻā§āϞ⧠test āĻāϰāĻŋ-
A. n (n+1) (n-4) = 7*8*3 and if n = 8 –> 8*9*4
B. n (n+2) (n-1) = 7*9*6 and if n = 8 –> 8*10*7
C. n (n+3) (n-5) = 7*10*5; eliminate as there are no multiples of 3
D. n (n+4) (n-2) = 7*11*5; eliminate as there are no multiples of 3
E. n (n+5) (n-6) = 7*12*1 and and if n = 8 –> 8*13*2
āĻĻā§āĻāĻž āϝāĻžāĻā§āĻā§, only A āϤ⧠3 āĻĻā§āĻŦāĻžāϰāĻž divisible āĻšā§, āϤāĻžāĻ A āĻ āĻšāĻā§āĻā§ answer.
# (all solution link) The product of 3 numbers to be divisible by 3 at least one of them must be divisible by 3. So, to ensure that the product of 3 integers shown is divisible by 3 all 3 numbers must have different remainders upon division by 3, meaning that one of them should have remainder of 1, another reminder of 2 and the last one remainder of 0, so be divisible by 3. We should have something like n(n+1)(n+2) (for example: if n divided by 3 yields remainder of 1, then n+1 yields remainder of 2 and n+2 yields remainder of 0, thus it’s divisible by 3 OR if n divided by 3 yields remainder of 2, then n+2 yields remainder of 1 and n+1 yields remainder of 0, thus it’s divisible by 3).
Only option A satisfies this, because n(n+1)(nâ4)=n(n+1)(nâ6+2) and nâ6nâ6 has the same remainder as nn upon division by 3 thus we can replace it by nn.
Answer: A.
#
Shortcut: In every set of 3 consecutive numbers, ONE of them must be divisible by 3 when we are multiplying each of the digits
1*2*3
2*3*4
3*4*5
4*5*6
(A) n(n + 1)(n â 4)
The easiest is if we have something like n(n+1)(n+2)
We know in this case we DEFINITELY have an expression that is divisible by 3.
n=1 => 1*2*3
n=2 => 2*3*4
n=3 => 3*4*5
All are divisible by 3.
Any expression must pass our 3 consecutive integer test.
n(n + 1)(n â 4)
n=1 => 1*2*-3
n=2 => 2*3*1
n=3 => 3*4*-1
Even if n = 4 we have:
4*5*0 = 0 which is divisible by 3.
If n = 16
16*17*12 is divisible by 3.
So (A) passes all the tests and one of numbers in the expression will be divisible by 3 so the whole expression when multiplied together will be divisible by 3.
Question: If a, b, c are three consecutive positive even integers, which of the following must be an integer?
I. (a+b+c)/2
II.(a+b+c)/4
III. (a+b+c)/6
A. I only
B. III only
C. I and II only
D. I and III only
E. I, II and III
Solutions:
Key concept: All EVEN integers can be rewritten as 2n (where n is some integer)
Aside: This also means that all ODD integers can be rewritten as 2n + 1 (where n is some integer)
If, a, b, c are consecutive even integers.
Then, the even positive integers be 2n , 2n+2 & 2n+4 (where, three consecutive numbers be x, x+2, x+4)
(((so,
a=2n
b=2n+2
c=2n+4
a+b+c = 2n+(2n+2)+(2n+4) = 6n+6 )))
I. (a+b+c)/2 =2n+2n+2+2n+4/2 = 6n+6/2 = 3n+3 [if n is an integer, then 3n+3 must also be an integer.]
II. (a+b+c)/4 =2n+2n+2+2n+4/4 = 6n+6/4= 3n+3 [If n=2, then 3n+3/2=3(2)+3/2=9/2 is NOT an integer]
III. (a+b+c)/6=2n+2n+2+2n+4/6 = 6n+6/6 = n+1 [if n is an integer, then n+1 must also be an integer.]
Hence, Answer must be I. & III, (D)
Question:
Solution: even positive integers be 2n , 2n+2 & 2n+4
āĻāĻŋāĻā§āĻā§āώā§āϤā§āϰ⧠āϝā§āĻŽāύ- n = 2 āĻŦāϏāĻžāϞā§, a+b+c = 4+6+8 = 18
āϤāĻāύ, 18 āĻā§ 4, 12, 15 āĻĻāĻŋā§ā§ āĻāĻžāĻ āϝāĻžāĻŦā§ āύāĻžāĨ¤ āϤāĻžāĻ āĻāĻāĻā§āϞ⧠answer āĻšāĻŦā§ āύāĻžāĨ¤
āϏāĻžāĻā§āĻļāύāĻ āĻĒā§āϰāĻļā§āύ⧠Must be āĻŦāϞā§āĻā§ āύāĻžāĻāĻŋ could be āĻŦāϞā§āĻā§ āĻāĻāĻž āĻā§ā§āĻžāϞ āϰāĻžāĻāĻŦā§āĨ¤
#
#
Topic: Divisibility
Division(āĻāĻžāĻ):
# Dividend =Â Quotient x Divisor + Reminder
āĻ āϰā§āĻĨāĻžā§, āĻāĻžāĻā§āϝ(p) = āĻāĻžāĻāĻĢāϞ(q) x āĻāĻžāĻāĻ(k) + āĻāĻžāĻāĻļā§āώ(r)
*** If the remainder is r when p is divided by k then it can be written, p=kq + r where q is an integer.
#Â Dividend/Divisor = Quotient + (Reminder/Divisor)
āĻ āϰā§āĻĨāĻžā§, (āĻāĻžāĻā§āϝ / āĻāĻžāĻāĻ) = āĻāĻžāĻāĻĢāϞ + (āĻāĻžāĻāĻļā§āώ/āĻāĻžāĻāĻ)
Practice:
Q# āĻāĻžāĻāĻ 10, āĻāĻžāĻāĻĢāϞ ā§§ā§Ļ āĻāĻŦāĻ āĻāĻžāĻāĻļā§āώ 1 āĻšāϞā§, āĻāĻžāĻā§āϝ āĻāϤ?
Solution: āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, āĻāĻžāĻā§āϝ(p) = āĻāĻžāĻāĻĢāϞ(q) x āĻāĻžāĻāĻ(k) + āĻāĻžāĻāĻļā§āώ(r)
â´ āĻāĻžāĻā§āϝ(p) = 10 x 10 + 1 = 101 Ans.
#
#
*** odd āϏāĻāĻā§āϝāĻ divisor āĻŦā§āϰ āĻāϰāĻžāϰ āĻā§āϰāĻŋāĻāϏ- āĻāĻ number āĻāϰ square value……
# āĻļāϰā§āĻāĻāĻžāĻ āĻāĻžāĻ āĻāϰāĻžāϰ āύāĻŋāϝāĻŧāĻŽ-
ā§Ģ āĻĻāĻŋā§ā§ āĻļāϰā§āĻāĻāĻžāĻ āĻāĻžāĻ āĻāϰāĻžāϰ āύāĻŋāϝāĻŧāĻŽ:
⧍ā§Ģ āĻĻā§āĻŦāĻžāϰāĻž –
Divisible:
Divisible (āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ): āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāĻā§ āĻāϰā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāĻāĻļā§āώ⧠āĻāĻžāĻ āĻāϰāĻž āĻā§āϞā§[āĻāĻžāĻāĻļā§āώ āĻĨāĻžāĻāĻŦā§āύāĻž] āĨ¤ āϝā§āĻŽāύ- 39 āϏāĻāĻā§āϝāĻžāĻāĻŋ 13 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤
Evenly Divisible = divisible = Exactly Divisible(āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ): āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāĻā§ āĻāϰā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāĻžāϰ āĻĒāĻ°Â āĻāĻžāĻāĻļā§āώ āĻĨāĻžāĻāĻŦā§āύāĻžāĨ¤ (means have no remainder)
Exact Divisibility by 2: 2 divide all even numbers exactly such as 2, 4, 6, 8, 12, 14, 16, 18, 20, etc. We see that the unit digit of these numbers is 0, 2, 4, 6 or 8.
The product of 2 and a whole number is called an even number.
A number is exactly divisible by 2 it its unit digit is 0, 2, 4 6 or 8.
Divisibiility rules: 2,4,5 || 3,6,9 ||
- i) āĻā§āύ āϏāĻāĻā§āϝāĻžāϰ āĻāĻāĻ āϏā§āĻĨāĻžāύā§āϝāĻŧ āĻ
āĻāĻāĻāĻŋ āĻļā§āύā§āϝ āĻšāϞ⧠āĻ
āĻĨāĻŦāĻž āĻā§ā§ āϏāĻāĻā§āϝāĻž āĻšāϞā§, āĻĒā§āϰāĻĻāϤā§āϤ āϏāĻāĻā§āϝāĻžāĻāĻŋ ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤ āĻ
āϰā§āĻĨāĻžā§,
āĻāĻāĻāĻŋ integer 2 āĻĻāĻŋāϝāĻŧā§ divisible āĻšāĻŦā§ āϝāĻĻāĻŋ integer āĻāϰ āĻļā§āώ āϏāĻāĻā§āϝāĻž(units digit)āĻāĻŋ even or 0 āĻšāϝāĻŧāĨ¤ āϝā§āĻŽāύ- 598 integer āĻāĻŋ 2
āĻĻāĻŋāϝāĻŧā§ divisible. - ii) āĻāĻāĻāĻŋ integer 3 āĻĻāĻŋāϝāĻŧā§ divisible āĻšāĻŦā§ āϝāĻĻāĻŋ integer āĻāϰ digit āĻā§āϞā§āϰ sum 3 āĻĻāĻŋāϝāĻŧā§ divisible(āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ) āĻšā§. āϝā§āĻŽāύ : 2145 integer āĻāĻŋ 3 āĻĻāĻŋāϝāĻŧā§ divisible āĻā§āύāύāĻž 2 + 1 + 4 + 5 = 12 āĻāĻŦāĻ 12 integer āĻāĻŋ 3 āĻĻāĻŋāϝāĻŧā§ divisible.
- iii) āĻāĻāĻāĻŋ integer 4 āĻĻāĻŋāϝāĻŧā§ divisible āĻšāĻŦā§ āϝāĻĻāĻŋ integer āĻāĻŋāϰ āĻļā§āώ āĻĻā§āĻāĻŋ āĻĄāĻŋāĻāĻŋāĻ 4 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšā§(/āĻļā§āώ āĻĻā§āĻāĻŋ āĻĄāĻŋāĻāĻŋāĻ 00 āĻšāϞā§āĻ) 4 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤ āϝā§āĻŽāύ: 440 āϏāĻāĻā§āϝāĻžāĻāĻŋāϰ āĻļā§āώ āĻĻā§āĻāĻŋ āϏāĻāĻā§āϝāĻž 40, āϝāĻžāĻā§ 4 āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ(divisible) āĻāϰāĻž āϝāĻžā§āĨ¤ āĻ āύā§āϝāĻāĻžāĻŦā§ 440 integer āĻāĻŋ 4 āĻĻāĻŋā§ā§ divisible āĻā§āύāύāĻž 40 integer āĻāĻŋ 4 āĻĻāĻŋā§ā§ divisible.
- iv) āĻāĻāĻāĻŋ integer 5 āĻĻāĻŋāϝāĻŧā§ divisible āĻšāĻŦā§ āϝāĻĻāĻŋ āϤāĻžāϰ āĻļā§āώ āϏāĻāĻā§āϝāĻž(units digit)āĻāĻŋ 0 āĻŦāĻž 5 āĻšāϝāĻŧāĨ¤ āϝā§āĻŽāύ : 1115
- vii) āĻāĻāĻāĻŋ integer 6 āĻĻāĻŋāϝāĻŧā§ divisible āĻšāĻŦā§ āϝāĻĻāĻŋ integer āĻāĻŋ 2 āĻ 3 āĻāĻā§āĻā§ āĻĻāĻŋāϝāĻŧā§ divisible āĻšāϝāĻŧāĨ¤ āĻŦāĻŋāĻāϞā§āĻĒ āϏāĻšāĻ āύāĻŋā§āĻŽāĻ āĻā§ā§ āϏāĻāĻā§āϝāĻž āĻ āĻāĻāĻ āϏāĻžāĻĨā§ sum 3 āĻĻāĻŋāϝāĻŧā§ divisible(āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ) āĻšāϞā§āĨ¤
- Example: For 123456,
- Split the number into groups of three digits, 123 & 456.
- 123â456=â333; if -333 is divisible by 7, so is the original number.
(āĻāϰāĻ āĻŦā§ āϏāĻāĻā§āϝāĻž āĻšāϞ⧠āϏā§āĻā§āώā§āϤā§āϰā§, āĻā§ā§ three digits āĻā§āϞ⧠āĻĨā§āĻā§ āĻŦāĻŋāĻā§ā§ three digits āĻā§āϞā§āĻā§ āĻŦāĻŋā§ā§āĻ āĻāϰ⧠āĻāϰāĻĒāϰ 7 āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāĻŦ) āϏāĻŦāĻā§ā§ā§ āϏāĻšāĻ āύāĻŋā§āĻŽ- https://youtu.be/17nXsZqEOTM?si=A4oHy3YsL_RKVBTZvii) āĻāĻāĻāĻŋ integer 7 āĻĻāĻŋāϝāĻŧā§ divisible āĻāĻŋāύāĻž āϤāĻž āĻĻā§āĻāĻāĻžāĻŦā§ āĻŦā§āϰ āĻāϰāĻž āϝāĻžā§-
1. Subtract Method (Basic Method for small Numbers): āĻļā§āώ āϏāĻāĻā§āϝāĻžāϤ⧠āĻĄāĻŦāϞ āĻāϰāϞ⧠āϝāĻž āĻšā§ āϏā§āĻāĻž āĻŽā§āϞ āϏāĻāĻā§āϝāĻžāϰāϰ āĻļā§āώ āϏāĻāĻā§āϝāĻž āĻŦā§āϝāĻžāϤāĻŋāϤ āĻŦāĻžāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻĨā§āĻā§ āĻŦāĻŋā§ā§āĻ āĻĻā§āĻŦ, āĻāϰāĻĒāϰ ā§ āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāĻŦāĨ¤ (āĻŦā§ āϏāĻāĻā§āϝāĻž āĻšāϞ⧠āĻĒāϰā§āϝāĻžā§āĻā§āϰāĻŽā§ āĻāĻāĻžāĻŦā§ āĻāϰāϤ⧠āĻĨāĻžāĻāĻŦāĨ¤)- Example: For 826
- Double the last digit 6â12
- Subtract 82â12=70, which is divisible by 7.
2. Forming Groups of Three Method (Advanced Method for Large Numbers):
- viii) āĻāĻāĻāĻŋ integer 8 āĻĻāĻŋāϝāĻŧā§ divisible āĻšāĻŦā§ āϝāĻĻāĻŋ āĻĄāĻžāύ āĻĻāĻŋāĻā§āϰ āϤāĻŋāύāĻāĻŋ digit āĻāϰ integerāĻāĻŋ ā§Ē āĻĻāĻŋāϝāĻŧā§ divisible āĻšāϝāĻŧ āĨ¤
āϝā§āĻŽāύ- 44816 integerāĻāĻŋ 8 āĻĻāĻŋā§ā§ divisible. āĻā§āύāύāĻž 816 integerāĻāĻŋ 8 āĻĻāĻŋā§ā§ divisible. - ix) āĻāĻāĻāĻŋ integer 9 āĻĻāĻŋāϝāĻŧā§ divisible āĻšāĻŦā§ āϝāĻĻāĻŋ sum of the digits 9 āĻĻāĻŋāϝāĻŧā§ divisible āĻšāϝāĻŧāĨ¤
12339 integerāĻāĻŋ 9 āĻĻāĻŋā§ā§ divisible āĻā§āύāύāĻž 1+2+3+3+9 = 18 integerāĻāĻŋ 9 āĻĻāĻŋā§ā§ divisible. - xiii) āĻāĻāĻāĻŋ integer 10 āĻĻāĻŋāϝāĻŧā§ divisible āĻšāĻŦā§ āϝāĻĻāĻŋ āĻāϰ units digit 0 āĻšāϝāĻŧāĨ¤
- ix) āĻāĻāĻāĻŋ integer 11 āĻĻāĻŋāϝāĻŧā§ divisible āĻšāĻŦā§ āϝāĻĻāĻŋ āĻĄāĻžāύ āĻĻāĻŋāĻ āĻĨā§āĻā§ odd numbered place āĻā§āϞā§āϰ sum of the digit āĻāĻŦāĻ even numbered place āĻā§āϞā§āϰ sum of the digit āĻāϰ āĻĒāĻžāϰā§āĻĨāĻā§āϝ 0 āĻŦāĻž 11 āĻĻā§āĻŦāĻžāϰāĻž divisible āĻšāϝāĻŧāĨ¤
āϝā§āĻŽāύ- 411213 integer āĻāĻŋ 11 āĻĻāĻŋā§ā§ divisible āĻā§āύāύāĻž (1+2+3)-(4+1+1)=0 Divisor āĻāϰ divisibility rule āĻŽāĻžāύ⧠āύāĻž āĻāĻŽāύ āĻā§āύ⧠Dividend āύā§āĻ āϝāĻž evenly divisible. - āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāĻ⧠⧧⧍ āĻĻā§āĻŦāĻžāϰāĻž divisible āĻāϰāĻž āϝāĻžāĻŦā§ āϝāĻĻāĻŋ āϤāĻžāĻā§ ā§Š āĻ ā§Ē āĻāĻā§ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž divisible āĻāϰāĻž āϝāĻžā§āĨ¤
- Divisibility By 13: āĻļā§āώ āϏāĻāĻā§āϝāĻžāϤ⧠4āĻā§āĻŖ āĻāϰāϞ⧠āϝāĻž āĻšā§ āϏā§āĻāĻž āĻŽā§āϞ āϏāĻāĻā§āϝāĻžāϰāϰ āĻļā§āώ āϏāĻāĻā§āϝāĻž āĻŦā§āϝāĻžāϤāĻŋāϤ āĻŦāĻžāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻĨā§āĻā§ āĻŦāĻŋā§ā§āĻ āĻĻā§āĻŦ, āĻāϰāĻĒāϰ 13 āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāĻŦāĨ¤ (āĻŦā§ āϏāĻāĻā§āϝāĻž āĻšāϞ⧠āĻĒāϰā§āϝāĻžā§āĻā§āϰāĻŽā§ āĻāĻāĻžāĻŦā§ āĻāϰāϤ⧠āĻĨāĻžāĻāĻŦāĨ¤)
- Divisibility By 14: A number is divisible by 14, if it is divisible by 2 as well as 7.12.
- Divisibility By 15: A number is divisible by 15, if it is divisible by both 3 and 13.
- Divisibility By 16: A number is divisible by 16, if the number formed by the last 4 digits is divisible by 16. Ex. 7957536 is divisible by 16, since the number formed by the last four digits is 7536, which is divisible by 16.
- Divisibility By 17:
Divisibility By 19:
Divisibility By 24: A given number is divisible by 24, if it is divisible by both 3 and 8.Divisibility By 25: āĻļā§āώ āĻĻā§āĻ āĻāϰ ⧍ā§Ģ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšāϞā§āĨ¤Divisibility By 40: A given number is divisible by 40, if it is divisible by both 5 and 8.Divisibility By 80: A given number is divisible by 80, if it is divisible by both 5 and 16.
Note: If a number is divisible by p as well as q, where p and q are co-primes, then the given number is divisible by pq.
If p and q are not co-primes, then the given number need not be divisible by pq, even when it is divisible by both p and q.
Ex. 36 is divisible by both 4 and 6, but it is’ not divisible by (4 x 6) = 24, since
4 and 6 are not co-primes.
Divisibility āϰ āĻāĻ āϏāĻŦ rule āĻāϰ āĻāĻĒāϰ āĻāĻŋāϤā§āϤāĻŋ āĻāϰ⧠āĻā§āύ integer āĻŦāĻĄāĻŧ āĻ āύā§āϝ āĻā§āύ divisor āĻĻāĻŋāϝāĻŧā§ divisible āĻāĻŋāύāĻž āϤāĻž āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤
*** Each number is divisible by its factors; so factors are also called divisors(āĻāĻžāĻāĻ)āĨ¤Â [āĻāĻžāĻāĻ(divisor) āϏāĻāĻā§āϝāĻž āĻŦā§āϰ āĻāϰāĻžāϰ āĻ āϰā§āĻĨ āĻšāϞ⧠āĻĒā§āϰāĻĻāϤā§āϤ āϏāĻāĻā§āϝāĻžāĻāĻŋāĻā§ āĻŽā§āĻ āĻāϝāĻŧāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāĻž āϝāĻžāϝāĻŧ]
*** āϤāĻŋāύ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āϤāĻŋāύ āĻ āĻā§āĻā§āϰ āĻĒā§āϰāĻĨāĻŽ āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻšāĻŦā§ = 102. āĻāĻžāϰāĻŖ, 102 āĻāϰ āĻ āĻā§āĻāĻā§āϞāĻŋ āϝā§āĻ āĻāϰāϞ⧠āϝā§āĻāĻĢāϞ āĻšāĻŦā§ = 1 + 0 + 2 = 3, āϝāĻž āϤāĻŋāύ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āĻāĻŦāĻ āϤāĻŋāύ āĻ āĻā§āĻā§āϰ āĻĒā§āϰāĻĨāĻŽ āϏāĻāĻā§āϝāĻžāĨ¤
*** āϤāĻŋāύ āĻ āĻā§āĻā§āϰ āĻā§āώā§āĻĻā§āϰāϤāĻŽ āϏāĻāĻā§āϝāĻž = 100.
# āĻĒā§āϰāĻžāĻāĻāĻŋāϏāĻ-
# ā§Ģā§Ļ āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻāϰ āĻŽāϧā§āϝ⧠⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āϏāĻāĻā§āϝāĻž āĻāϝāĻŧāĻāĻŋ?
āĻļāϰā§āĻāĻāĻžāĻ āύāĻŋā§āĻŽ-
ā§§āĻŽā§, ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāϤā§āϝā§āĻāĻāĻž āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦāĨ¤
ā§Ģā§Ļ/⧍ = ⧍ā§Ģ
ā§§ā§Ļā§Ļ/⧍ = ā§Ģā§Ļ
⧍ā§āϤ, āĻāĻĻā§āϰ āĻŦāĻŋā§ā§āĻ āĻāϰāĻŦāĨ¤
ā§Ģā§Ļ – ⧍ā§Ģ = ⧍ā§Ģ
ā§Šā§āϤ, āĻĒā§āϰāĻļā§āύ⧠āĻĻā§ā§āĻž āĻā§āĻ āϏāĻāĻā§āϝāĻžāĻāĻžāϰ āĻĻāĻŋāĻā§ āϞāĻā§āώ āĻāϰāĻŦ āϝā§, āĻāĻāĻŋ āύāĻŋāĻāĻļā§āώ⧠āĻāĻžāĻ āĻāϰāĻž āĻā§āϏ⧠āĻāĻŋāύāĻžāĨ¤ āύāĻŋāĻāĻļā§āώ⧠āĻāĻžāĻ āĻāϰāĻž āĻā§āϞ⧠āĻāĻāĻŋāϰ āϏāĻžāĻĨā§ ā§§ āϝā§āĻ āĻāϰ⧠āĻĻā§āĻŦāĨ¤
⧍ā§Ģ + ā§§ = 26
# ā§§ā§Ļā§Ļ āĻĨā§āĻ⧠⧍ā§Ļā§Ļ āĻāϰ āĻŽāϧā§āϝā§ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āϏāĻāĻā§āϝāĻž āĻāϝāĻŧāĻāĻŋ?
(198 â 102)/3 + 1 = 33 āϝā§āĻāĻžāύā§, {(āϏāϰā§āĻŦā§āĻā§āĻ āĻāĻžāĻ āϝāĻžāĻā§āĻž āϏāĻāĻāĻž â āϏāϰā§āĻŦ āύāĻŋāύā§āĻŽ āĻāĻžāĻ āϝāĻžāĻā§āĻž āϏāĻāĻāĻž) / āϏā§āĻ āϏāĻāĻā§āϝāĻž} + ā§§
āϤāĻžāĻšāϞ⧠āϝā§āĻāύ⧠āĻĒā§āϰāĻļā§āύā§āϰ āĻāϤā§āϤāϰ āĻŦā§āϰ āĻāϰāĻž āϝāĻžāĻŦā§āĨ¤
āĻāϰāĻ āĻā§āĻāύāĻŋāĻ āĻāĻžāĻāĻŋā§ā§, ⧍ā§Ļā§Ļ – ā§§ā§Ļā§Ļ = ā§§ā§Ļā§Ļ,Â Â ā§§ā§Ļā§Ļ/ā§Š = ā§Šā§Š.ā§Šā§Ē = ā§Šā§Š
āĻļāϰā§āĻāĻāĻžāĻ āύāĻŋā§āĻŽ-
ā§§āĻŽā§, ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāϤā§āϝā§āĻāĻāĻž āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦāĨ¤
ā§§ā§Ļā§Ļ/ā§Š = ā§Šā§Š.ā§Šā§Š
⧍ā§Ļā§Ļ/ā§Š = ā§Ŧā§Ŧ.ā§Ŧā§Ŧ
⧍ā§āϤ, āĻāĻĻā§āϰ āĻŦāĻŋā§ā§āĻ āĻāϰāĻŦāĨ¤
ā§Ŧā§Ŧ.ā§Ŧā§Ŧ – ā§Šā§Š.ā§Šā§Š = ā§Šā§Š.ā§Šā§Š
ā§Šā§āϤ, āĻĒā§āϰāĻļā§āύ⧠āĻĻā§ā§āĻž āĻā§āĻ āϏāĻāĻā§āϝāĻžāĻāĻžāϰ āĻĻāĻŋāĻā§ āϞāĻā§āώ āĻāϰāĻŦ āϝā§, āĻāĻāĻŋ āύāĻŋāĻāĻļā§āώ⧠āĻāĻžāĻ āĻāϰāĻž āĻā§āϏ⧠āĻāĻŋāύāĻžāĨ¤ āϝāĻĻāĻŋ āύāĻŋāĻāĻļā§āώ⧠āĻāĻžāĻ āĻāϰāĻž āϝā§āϤ āĻāĻāĻŋāϰ āϏāĻžāĻĨā§ ā§§ āϝā§āĻ āĻāϰ⧠āĻĻā§ā§āĻž āĻšāϤāĨ¤
Solution: ā§Ģ āĻāĻŦāĻ ā§Š āĻāϰ āϞ.āϏāĻž.āĻā§ = ā§§ā§Ģ
ā§Ģ āĻāĻŦāĻ ā§¯ā§Ģ āĻāϰ āĻŽāϧā§āϝ⧠āĻĒāĻžāϰā§āĻĨāĻā§āϝ  (⧝ā§Ģ – ā§Ģ) = ⧝ā§Ļ
āϏāĻāĻā§āϝāĻž āĻĻā§āĻāĻŋāϰ āĻĒāĻžāϰā§āĻĨāĻā§āϝ /  āϞāϏāĻžāĻā§ Â = ⧝ā§Ļ/ā§§ā§Ģ =  ā§Ŧ
āĻ āϤāĻāĻŦ, ā§Ģ āĻĨā§āĻ⧠⧝ā§Ģ āĻāϰ āĻŽāϧā§āĻ¯ā§ ā§Š āĻāĻŦāĻ ā§Ģ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āϏāĻāĻā§āϝāĻž ā§Ŧ āĻāĻŋāĨ¤
āϝāĻĨāĻžāĻ- ā§§ā§Ģ, ā§Šā§Ļ, ā§Ēā§Ģ, ā§Ŧā§Ļ, ā§ā§Ģ, ⧝ā§Ļ
# āĻĻā§āĻ āĻ āĻā§āĻ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāϤāĻā§āϞāĻŋ āϏāĻāĻā§āϝāĻž 3 āĻĻā§āĻŦāĻžāϰāĻž āϏāĻŽā§āĻĒā§āϰā§āĻŖ āϰā§āĻĒā§ āĻŦāĻŋāĻāĻžāĻā§āϝ?
Solution: āĻĒā§āϰāĻļā§āύ āĻ āύā§āϝāĻžā§ā§ āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāĻāĻŋ āĻšāϞā§, 12,15,18âĻ..99
āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ,a=12 āĻāĻŦāĻ āϏāĻžāϧāĻžāϰāĻŖ āĻ āύā§āϤāϰ,d=3
āϏā§āϤāϰāĻžāĻ, a+(n-1)d=99
āĻŦāĻž,12+(n-1)3=99
āĻŦāĻž,12+3n-3=99 [āĻļāϰā§āĻāĻāĻžāĻ āϏā§āϤā§āϰ, X = [(āĻļā§āώ āϏāĻāĻā§āϝāĻž – āĻĒā§āϰāĻĨāĻŽ āϏāĻāĻā§āϝāĻž) + d]//d]
āĻŦāĻž,3n=90
āĻŦāĻž,n=30
āĻ āϰā§āĻĨāĻžā§ ā§Šā§Ļ āĻāĻŋ āϏāĻāĻā§āϝāĻž ⧍āĻ āĻā§āĻā§āϰ āĻāĻā§ āϝāĻž ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻāĻŋāϤ āĻšā§āĨ¤
# āĻāĻžāĻāĻ/divisor/factor āϏāĻāĻā§āϝāĻž āĻŦā§āϰ āĻāϰāĻž-
#
UNIT DIGIT + āĻāĻžāĻāĻļā§āώ āύāĻŋāϰā§āĻŖāϝāĻŧ(Find Remainder) /Number System:
x = xš x² xÂŗ xâ´
2 = 2 4 8 6
3 = 3 9 7 1
4 = 4, 6
- 5=5
- 6 = 6
7 = 7 9 3 1
8 = 8 4 2 6
9 = 9 1
āĻāĻžāĻāĻļā§āώ āύāĻŋāϰā§āĻŖāϝāĻŧ-Â
Power Even = 1 (Reminder)
Power Odd = base
#
āĻāĻžāĻāĻļā§āώ āύāĻŋāϰā§āĻŖāϝāĻŧ ( Find Remainder )
Practice:
 Factor/Factorisation (āĻā§āĻŖāύā§ā§āĻ/āĻā§āĻĒāĻžāĻĻāĻ/āĻāĻžāĻāĻā§āϰ āϏāĻāĻā§āϝāĻž):
āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāĻā§ āϝ⧠āϏāĻāϞ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāĻāĻļā§āώ⧠āĻāĻžāĻ āĻāϰāĻž āϝāĻžāϝāĻŧ āϏā§āϏāĻŦ āϏāĻāĻā§āϝāĻžāĻā§ Factor āĻŦāϞā§āĨ¤
* 1 āĻšāĻā§āĻā§ āϏāĻŦ āύāĻžāĻŽā§āĻŦāĻžāϰ āĻāϰāĻ common factor.
* (0 āĻāĻŦāĻ 1 āĻŦā§āϝāϤā§āϤ) āĻĒā§āϰāϤāĻŋāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻāĻŽāĻĒāĻā§āώ⧠āĻĻā§āĻāĻŋ āĻā§āĻŖāύā§āϝāĻŧāĻ(factor) āϰāϝāĻŧā§āĻā§, āĻāĻāĻāĻŋ āĻšāϞ 1(āϏāĻŦāϏāĻŽā§) āĻāĻŦāĻ āĻŦāĻžāĻāĻŋ āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻšāϞ āĻ āϏāĻāĻā§āϝāĻžāĻāĻŋāĻ(āύāĻŋāĻā§āĻ)āĨ¤
āϝā§āĻŽāύ-
āĻĒāĻĻā§āϧāϤāĻŋ ā§§āĻ #
āĻĒāĻĻā§āϧāϤāĻŋ 2āĻ(āĻ āύā§āϝāĻāĻžāĻŦā§)
Q: 12 āĻ 16 āĻāϰ G.C.F āĻāϤ?
The factors of 12 = 1, 2, 3, 4, 6, 12 āĻāĻā§āϞ⧠(ā§ŦāĻāĻŋ)
The factors of 16 = 1, 2, 4, 8, 16 āĻāĻā§āϞ⧠(ā§ĢāĻāĻŋ)
The common factors of 12 & 16 = 1, 2, 4 āĻāĻā§āϞ⧠(ā§ŠāĻāĻŋ)
Highest Common Factor(H.C.F.) āĻŦāĻž Gretest Common Factor(G.C.F) āĻŦāĻž (G.C.M.) āĻŦāĻž (G.C.D.) āĻŦāĻž [āĻ.āϏāĻž.āĻā§.]:
The Highest Common Factor (H.C.F.) of 12 & 16Â = 4
shortcut: 12=3šx2², 16 = 2â´;  12 & 16 = 2²=4 (āĻļāϰā§āĻāĻāĻžāĻāĻ G.C.F āĻ āĻļā§āϧ⧠āĻāĻŽāύ āĻĒāĻžāĻā§āĻžāϰ āĻāϰ āϏāĻŦāĻā§ā§ā§ āĻāĻŽ āϏāĻāĻā§āϝāĻ āύā§āĻŦ)
āĻĒāĻĻā§āϧāϤāĻŋ 3āĻ (āĻ.āϏāĻž.āĻā§ āύāĻŋāϰā§āĻŖāϝāĻŧā§ āĻļāϰā§āĻāĻāĻžāĻ āĻĒāĻĻā§āϧāϤāĻŋ) –link2– [āĻā§āĻ āϏāĻāĻā§āϝāĻžāĻā§āϞā§āϰ āĻā§āώā§āϤā§āϰ⧠āĻāĻāĻž āĻŦā§āϏā§āĻ āĻā§āϰāĻŋāĻā§āϏāϏ]
# āĻŽāύ⧠āϰāĻžāĻāĻŦā§. āĻ.āϏāĻž.āĻā§ āĻāϰ āϏāϰā§āĻŦā§āĻā§āĻ āĻŽāĻžāύ āĻšāϤ⧠āĻĒāĻžāϰ⧠āϏāĻŦāĻāĻāĻŋ āĻāϰ āϏāĻŦāĻā§āϝāĻŧā§ āĻā§āĻ āϏāĻāĻā§āϝāĻžāϰ āϏāĻŽāĻžāύ āĻŦāĻž āĻā§āĻāĨ¤ āϝā§āĻŽāύ- 4,8,36, 630 āĻāĻ āĻāϰ āĻŽāĻžāύ āĻšāϤ⧠āĻĒāĻžāϰ⧠4 āĻŦāĻž āĻāϰ āĻā§āĻ(āϏāϰā§āĻŦāύāĻŋāĻŽā§āύ 1)āĨ¤
# āϏāĻāĻā§āϝāĻžāĻā§āϞ⧠āĻŦā§āĻļāĻŋ āĻšāϞā§- āϏāĻŦāĻā§āϝāĻŧā§ āĻā§āĻ āϏāĻāĻā§āϝāĻž āĻŦāĻžāĻāĻžāĻ āĻāϰāĻŦ, āĻā§āĻ āϏāĻāĻā§āϝāĻžāĻāĻŋāϰ āĻĄāĻŋāϰā§āĻā§āĻ āĻā§āĻŖāĻŋāϤāĻ āĻŦā§ āϏāĻāĻā§āϝāĻžā§ āĻĒāĻžāĻā§āĻž āĻā§āϞ⧠āĻāĻāĻŋ āĻĄāĻŋāϰā§āĻā§āĻ āĻŦāĻžāĻĻāĨ¤ āĻāĻāĻžāĻŦā§ āύāĻž āĻŽāĻŋāϞāϞ⧠next testing āĻšāĻŦā§- āϏāĻŦāĻā§āϝāĻŧā§ āĻā§āĻ āϏāĻāĻā§āϝāĻžāĻāĻŋāĻā§ devide āĻāϰ⧠āĻāϰ⧠āĻĻā§āĻāĻŦ, āϝāĻžāϤ⧠āĻā§āĻ āϏāĻāĻā§āϝāĻžāĻāĻŋāϰ devideāĻā§āϤ āĻŽāĻžāύāĻāĻŋ(āϏāĻāĻā§āϝāĻžāĻāĻŋ) āĻĻāĻŋā§ā§ āĻšāϞā§āĻ āϝā§āύ āĻŦāĻžāĻāĻŋ āϏāĻāĻā§āϝāĻžāĻā§āϞ⧠āĻā§āĻŖāĻŋāϤāĻ āĻāϰāĻž āϝāĻžā§, āϤāĻžāĻšāϞ⧠āĻ(āϏāĻāĻā§āϝāĻž)āĻāĻŋāĻ āĻ.āϏāĻž.āĻā§āĨ¤
āĻ
āĻĨāĻŦāĻž, āϏāĻŦāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāĻā§ āϝ⧠āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž devide āĻāϰāĻž āϝāĻžāϝāĻŧ āĻāĻāĻŋāĻ āĻ.āϏāĻž.āĻā§āĨ¤ (āϏāĻŦāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻŽāϧā§āϝ⧠āύā§āϝā§āύāϤāĻŽ āĻĻā§āĻāĻŋ āϏāĻāĻā§āϝāĻžāĻā§ devide āĻāϰāĻž āύāĻž āĻā§āϞ⧠1 āĻ āĻšāĻŦā§ āĻ.āϏāĻž.āĻā§āĨ¤
devide āĻāϰāĻžāϰ āĻā§āώā§āϤā§āϰā§, āϝāϤāĻŦāĻžāϰ devide āĻāϰāĻž āϝāĻžāĻŦā§ āϤāϤāĻŦāĻžāϰ āĻ āϏāĻāĻā§āϝāĻž(āĻā§āϞā§) note āĻāϰ⧠āϞāĻŋāĻā§ āϰāĻžāĻāĻŦ, note āĻāϰ⧠āϰāĻžāĻāĻž āϏāĻāĻā§āϝāĻžāĻā§āϞ⧠āĻā§āĻŖ āĻāϰāϞā§āĻ āĻāĻāĻŋāĻ āĻ.āϏāĻž.āĻā§āĨ¤
āĻāĻĻāĻžāĻšāϰāĻŖ-Â
# 5, 10 āĻāϰ āĻ.āϏāĻž.āĻā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
5/10 (5)= (āĻŦāĻž, 5/5, 10/5) āĻāĻā§āώā§āϤā§āϰā§= 5
# 12, 28 āĻāϰ āĻ.āϏāĻž.āĻā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
12/28 (2) = 6/14 [2] = 3/7 (āĻŦāĻž, 12/12, 28/2) āĻāĻā§āώā§āϤā§āϰā§= 2 x 2 = 4
# 20, 25, 30 āĻāϰ āĻ.āϏāĻž.āĻā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĨ¤
20/4 = 5 [āϏāĻŦāĻā§ā§ā§ āĻā§āĻ āϏāĻāĻā§āϝāĻžāĻāĻŋāϰ devide āĻŽāĻžāύ 5, āϝāĻž āĻŦāĻžāĻāĻŋ āϏāĻāĻā§āϝāĻžāĻā§āϞā§āϰāĻ āĻā§āĻŖāĻŋāϤāĻ āĻšā§āĨ¤ āĻāĻāύā§āϝ āĻāĻāĻžāĻ āύāĻŋāϰā§āĻŖā§āϝāĻŧ āĻ.āϏāĻž.āĻā§]
#
Prime Factorisation(āĻŽā§āϞāĻŋāĻ āĻā§āĻŖāύā§āϝāĻŧāĻ):
āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§ ā§§āĻ āĻ āϏāĻāĻā§āϝāĻž āĻāĻžāĻĄāĻŧāĻž āĻ āύā§āϝ āĻā§āύ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšāϝāĻŧ āύāĻž āϤāĻžāĻā§ āĻŽā§āϞāĻŋāĻ āĻā§āĻŖāύā§āϝāĻŧāĻ āĻŦāϞā§āĨ¤āϝā§āĻŽāύ- 5 āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻāĻ āĻ 5 āĻāĻžāĻĄāĻŧāĻž āĻ āύā§āϝ āĻā§āύ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšāϝāĻŧ āύāĻžāĨ¤
# 350 āĻāϰ unique dna = 2š5²7š (350 = 2x5x5x7)
āϤāĻžāĻšāϞ⧠āĻĻā§āĻāĻž āϝāĻžāĻā§āĻā§, 350 āĻāϰ Prime Factor = 2, 5, 7
āĻāĻŦāĻ 350 āĻāϰ āĻŽā§āĻ factor = (1+1) x (2+1) x (1+1) = 12 āĻāĻŋ
āĻŦāĻž,
total factors(number) āĻŦā§āϰ āĻāϰāĻžāϰ āĻāĻĒāĻžā§: unique dna āĻāϰ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻāĻžāϤā§āϰ āϏāĻžāĻĨā§ 1 āϝā§āĻ āĻāϰ⧠āϏā§āĻā§āϞ⧠āĻā§āĻŖ āĻāϰāϞā§Â total factor numbers āĻĒāĻžāĻā§āĻž āϝāĻžā§āĨ¤
Q: how many factor(numbers) of 350?
Ans: 350 āĻāϰ unique dna = 2š5²7š (350 = 2x5x5x7)
āϤāĻžāĻšāϞ⧠āĻĻā§āĻāĻž āϝāĻžāĻā§āĻā§, 350 āĻāϰ āĻŽā§āĻ factor = (1+1) x (2+1) x (1+1) = 12 āĻāĻŋ
Multiples(āĻā§āĻŖāĻŋāϤāĻ/āĻā§āύā§āϰ āύāĻžāĻŽāĻāĻž):
āĻāĻāĻŋ Factor āĻāϰ āĻŦāĻŋāĻĒāϰā§āϤāĨ¤ āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰāϞ⧠āϝ⧠āĻā§āĻŖāĻĢāϞ āϏāĻāĻā§āϝāĻž āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ, āϤāĻžāĻā§ āĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻŋāϤāĻ āĻŦāϞā§āĨ¤
* Zero is a multiple of every integers but is not a factor(the only number that zero can be a factor of is zero)
* Factor are not infinite, but multiples are infinite.
Least Common Multiple (L.C.M.) [āϞ.āϏāĻž.āĻā§]:
āĻĒāĻĻā§āϧāϤāĻŋ ā§§āĻ āϝā§āĻŽāύ-
Q: 12 āĻ 16 āĻāϰ L.C.M. āĻŦā§āϰ āĻāϰāĨ¤Â
The multiples of 12 = 12, 24, 36, 48, 60, 72, 84, 96…144…192
The multiples of 16 = 16, 32, 48, 64, 80, 96, 112….144…192
The common multiples of 12 & 16 = 18, 96, 144, 192.
The Least Common Multiple (L.C.M.) of 12 and 16 = 48
shortcut: 12=3šx2², 16 = 2â´;  12 & 16 = 2â´x3š=48 (āĻļāϰā§āĻāĻāĻžāĻāĻ L.C.M āĻ āĻāĻāĻžāϰā§āĻ āϏāĻŦāĻā§āϞā§Â āĻĨā§āĻā§ āĻĒāĻžāĻā§āĻžāϰ āĻāϰ āϏāĻŦāĻā§ā§ā§ āĻŦā§āĻļāĻŋ āϏāĻāĻā§āϝāĻ āύā§āĻŦ)
āĻĒāĻĻā§āϧāϤāĻŋ ⧍āĻ(āĻ āύā§āϝāĻāĻžāĻŦā§)
total multiples(number) āĻŦā§āϰ āĻāϰāĻžāϰ āĻāĻĒāĻžā§:
Q: how many Multiple(numbers) in (1-100) of 3?
Ans: {(last multiple – first multiple)/3} + 1
{(99-3)/3} + 1 = 33
āĻļāϰā§āĻāĻāĻžāĻ: (last Multiple āĻāĻžāύāĻž āĻĨāĻžāĻāϞ⧠āĻāĻžāĻ āĻĻāĻŋāϞā§āĻ āĻšā§, 99/3=33)
āĻāϰāĻ āĻāĻāĻāĻŋ āĻāĻĻāĻžāĻšāϰāĻŖ: how many Multiple(numbers) in (1-100) of 3?
Ans: 100/4=25 (āĻļāϰā§āĻāĻāĻžāĻ)
Practice:
#
or, and āĻāĻā§āϞā§āϰ āĻĻā§āĻāĻāĻžāϰ āĻĻā§āĻ meaning.
- or āĻĻā§āĻŦāĻžāϰāĻž A U B āĻā§ āĻŦā§āĻāĻžā§āĨ¤ āĻ āϰā§āĻĨāĻžā§ either A or B. ((( U āĻšāĻā§āĻā§Â or [āĻ āĻĨāĻŦāĻž] )))
-  and āĻĻā§āĻŦāĻžāϰāĻž AâŠB āĻ āϰā§āĻĨāĻžā§ Both āĻā§ āĻŦā§āĻāĻžā§āĨ¤
āϏā§āϤā§āϰāĻ A U B = A + B – AâŠB
1-100 āĻāϰ āĻŽāϧā§āϝā§: AâŠB āĻ āϰā§āĻĨāĻžā§ 3×4=12 āĻāĻā§ 8 āĻāĻŋāĨ¤ āĻāĻŦāĻ AâŠB āĻ āϰā§āĻĨāĻžā§ 4×5=20 āĻāĻā§ 8 āĻāĻŋāĨ¤
# āĻāĻŋāĻā§ āϏā§āϤā§āϰāĻ
#* if you divide an integere x by anothere integer y, the result is another integer, then; y is a factor of x.
# 9! = 9 x 8!
# āĻā§āύ āĻāĻāĻāĻž āϏāĻāĻā§āϝāĻžāϰ āĻŦā§āĻā§ā§ āϏāĻāĻā§āϝāĻ āĻĢā§āϝāĻžāĻā§āĻāϰ āĻĨāĻžāĻāϞ⧠āĻŦāϞāĻž āĻšāϞā§, āϤāĻžāĻšāϞ⧠āĻŦā§āĻā§ āύā§āĻŦ āϤāĻž āĻšāĻŦā§ āĻā§āύ āĻāĻāĻāĻž āϏāĻāĻā§āϝāĻžāϰ āϏā§āĻāϝāĻŧāĻžāϰāĨ¤ āϝā§āĻŽāύ- 4 āĻāϰ āĻŦā§āĻā§ā§ āϏāĻāĻā§āϝāĻ āĻĢā§āϝāĻžāĻā§āĻāϰ āĻāĻā§ = 1,2,4
āϝā§āĻŽāύ-
# āĻĻā§āĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻĢāϞ = āϏāĻāĻā§āϝāĻžāĻĻā§āĻŦāϝāĻŧā§āϰ āĻ.āϏāĻž.āĻā§(H.C.F) x āϏāĻāĻā§āϝāĻžāĻĻā§āĻŦāϝāĻŧā§āϰ āϞ.āϏāĻž.āĻā§(L.C.M)
āĻ āϰā§āĻĨāĻžā§, LCM x HCF = a x b āĻŦāĻž, If the HCF of a and b = x, and the LCM of a and b = y Then, ab = xy
Example:Â a=4, b=5,
The HCF of 4 & 5 is = 1.
The LCM of 4 & 5 = 20.
So,
R.H.S = 4 Ã 5 = 20,
L.H.S = LCM x HCF = 20 Ã 1 = 20
(proved)
# Multiple of ratio x H.C.F = L.C.M
So, 3x4x4 = 48
1. * If a number N is divisible by a number x, then N is also divisible by all factors of x.
Example: 32 is divisible by 16. Therefore, 32 must be divisible by 1, 2, 4, 8 which are all factors of 16.
02. āĻāĻŋāĻā§ āϏāĻāĻā§āϝāĻžāϰ H.C.F āĻŦā§āϰ āĻāϰāĻžāϰ āĻā§āώā§āϤā§āϰ⧠āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻ
āĻĒāϰ āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ factor āĻšāϞā§, factor āĻāĻŋ āϰā§āĻā§ āĻ
āĻĒāϰ āϏāĻāĻā§āϝāĻž āĻāĻĒā§āĻā§āώāĻž āĻāϰāĻž āϝāĻžāϝāĻŧāĨ¤
Example: Find the L.C.M of 9,15,18,25
āĻāĻā§āώā§āϤā§āϰ⧠9, 18 āĻāϰ factor āĻāĻŦāĻ 15 āĻāϰ 3 āĻ 5, 183 25 āĻāϰ factor, 183 25 āĻāϰ L.C.M āĻŦā§āϰ āĻāϰāϞ⧠āĻāϤā§āϤāϰ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāĻŦā§āĨ¤
03. āĻāĻŋāĻā§ āϏāĻāĻā§āϝāĻžāϰ H.C.F āĻŦā§āϰ āĻāϰāĻžāϰ āĻā§āώā§āϤā§āϰ⧠āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻ
āĻĒāϰ āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ factor āĻšāϞā§, factor āĻāĻŋ āϰā§āĻā§ āĻ
āĻĒāϰ āϏāĻāĻā§āϝāĻž āĻāĻĒā§āĻā§āώāĻž āĻāϰāĻž āϝāĻžāϝāĻŧāĨ¤
Example: Find the H.C.F of 9,18 and 21
āĻāĻā§āώā§āϤā§āϰ⧠18 āĻāĻĒā§āĻā§āώāĻž āĻāϰ⧠9 āĻ 21 āĻāĻŦāĻ H.C.F āĻŦā§āϰ āĻāϰāϞā§āĻ āĻāϤā§āϤāϰ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāĻŦā§āĨ¤
04. āϝāĻĻāĻŋ āĻāĻŽāύ āĻā§āύ number āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāϤ⧠āĻŦāϞāĻž āĻšāϝāĻŧ āϝāĻž āĻāĻŋāĻā§ number āĻĻāĻŋāϝāĻŧā§ divisible āϤāĻž āĻšāϞ⧠number āĻā§āϞā§āϰ L.C.M āĻŦā§āϰ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤
Example: find the number which is divisible by 2, 3, 5 and 7
Ans. 210.
05. āϝāĻĻāĻŋ āϏāĻŽāĻžāύ āĻā§āύ number āĻŦā§āϰ āĻāϰāϤ⧠āĻŦāϞāĻž āĻšāϝāĻŧ āϝāĻž āĻāĻŋāĻā§ āϏāĻāĻā§āϝāĻž āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāϞ⧠āĻĒā§āϰāϤā§āϝā§āĻ āĻā§āώā§āϤā§āϰ⧠āĻāĻāĻ remainder āĻĨāĻžāĻā§ āϤāĻŦā§ L.C.M āĻāϰ āϏāĻžāĻĨā§ remainder āϝā§āĻ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤
Example: āĻāĻā§āϰ Ans. āĻāϰ āϏāĻžāĻĨā§ 1 āϝā§āĻ āĻāϰ⧠āĻĻāĻŋāϞ⧠āĻĒā§āϰāϤā§āϝā§āĻ āĻā§āώā§āϤā§āϰ⧠1 remainder āĻĨāĻžāĻāĻŦā§āĨ¤
06. āĻĒā§āϰāĻĻāϤā§āϤ number āĻā§āϞā§āϰ āϏāĻŽ āĻŦā§āϝāĻŦāϧāĻžāύā§āϰ āĻāĻŋāĻā§ remainder āĻ
āĻŦāĻļāĻŋāώā§āĻ āĻĨāĻžāĻāϞ⧠L.C.M āĻĨā§āĻā§ āĻŦā§āϝāĻŦāϧāĻžāύ āĻŦāĻŋāϝāĻŧā§āĻ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤
Example: 210 āĻĨā§āĻā§ 1 āĻŦāĻŋāϝāĻŧā§āĻ āĻāϰāϞ⧠āĻ
āϰā§āĻĨāĻžā§ 209 āĻā§ 2, 3, 5, 7 āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāϞ⧠āϝāĻĨāĻžāĻā§āϰāĻŽā§ 1, 2, 4, āĻ 6 āĻ
āĻŦāĻļāĻŋāώā§āĻ āĻĨāĻžāĻāĻŦā§ (āĻāĻā§āώā§āϤā§āϰ⧠āĻŦā§āϝāĻŦāϧāĻžāύ 1 )
7. āĻā§āύ āϏāĻāĻā§āϝāĻž āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻāĻŋāĻā§ āϏāĻāĻā§āϝāĻž divisible āĻŦā§āϰ āĻāϰāϤ⧠āĻŦāϞāϞ⧠H.C.F āĻŦā§āϰ āĻāϤ⧠āĻšāĻŦā§āĨ¤
8. Fraction āĻāϰ comparison āĻŦāĻž addition āĻŦāĻž Subtraction āĻāϰ āĻā§āώā§āϤā§āϰ⧠fraction āĻā§āϞ⧠āĻāĻāĻ denominator āĻŦāĻŋāĻļāĻŋāώā§āĻ (āϏāĻŽāĻšāϰ āĻŦāĻŋāĻļāĻŋāώā§āĻ) āĻāϰāϤ⧠āĻšāϝāĻŧ, āϏā§āĻā§āώā§āϤā§āϰ⧠L.C.M āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠Least Common denominator (LCD) āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĻž āĻšāϝāĻŧāĨ¤
Prime numbers(āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž):
āϝā§(āϏāĻāϞ) (āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ)āϏāĻāĻā§āϝāĻžāĻā§ 1 āĻ āĻ āϏāĻāĻā§āϝāĻž āĻāĻžā§āĻž āĻ āύā§āϝ āĻā§āύ āϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāĻāĻļā§āώ⧠āĻāĻžāĻ(divisible) āĻāϰāĻž āϝāĻžāϝāĻŧ āύāĻž, āϤāĻžāĻā§ Prime numbers(āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž) āĻŦāϞā§āĨ¤
* āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻĒāĻžāĻĻāĻ(factor) āĻĻā§āĻāĻāĻŋ āĻšā§- 1 āĻ āĻ āϏāĻāĻā§āϝāĻžāĻāĻŋāĨ¤ āϝā§āĻŽāύ- 5 āĻāϰ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž āĻĻā§āĻāĻŋ āĻšāĻā§āĻā§: 1, 5 (= 5/1, 5/5) āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāĻž āϝāĻžā§āĨ¤
* 1 āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž āύā§, āĻāĻžāϰāĻŖ āĻāϰ āĻā§āĻĒāĻžāĻĻāĻ āĻāĻāĻāĻŋ (āĻļā§āϧ⧠1āĻ)āĨ¤
* 2 āĻšāĻā§āĻā§ āĻāĻāĻŽāĻžāϤā§āϰ āĻā§ā§(even) prime nuumber.
# āĻ āĻāĻĒāĻŋāĻā§āϰ Solving Teqniques Guidelines:
â1-300 āĻāϰ āĻŽāϧā§āϝ⧠prime numbers āĻā§āϞ⧠āĻŽā§āĻāϏā§āĻĨ āĻāĻžāύāϤ⧠āĻšāĻŦā§āĨ¤ (āĻŽā§āϝāĻžāĻĨāĻā§āϞ āĻĻā§āϰā§āϤ āĻĒāĻžāϰāĻžāϰ āĻāύā§āϝ)
âāĻā§āύ āϏāĻāĻā§āϝāĻž Prime Number āĻāĻŋāύāĻž āϤāĻž āύāĻŋāϰā§āĻŖāϝāĻŧā§āϰ āϏāĻšāĻ āĻĒāĻĻā§āϧāϤāĻŋ āĻāĻŋ āĻāĻžāύāϤ⧠āĻšāĻŦā§āĨ¤
âāϝā§āĻā§āύ⧠āϏāĻāĻā§āϝāĻžāϰ square āĻā§āϝāĻžāϞ⧠(āĻŦāϰā§āĻā§āϰ āύāĻžāĻŽāĻāĻž) āĻā§āϞāĻž āĻŽā§āĻāϏā§āĻĨ āĻāĻžāύāϤ⧠āĻšāĻŦā§āĨ¤
āĻāĻā§āώā§āϤā§āϰā§, āĻĻā§āĻ āĻ āĻā§āĻā§āϰ āϝā§āĻā§āύ⧠āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻ āύāĻŋāϰā§āĻŖā§ā§āϰ āĻļāϰā§āĻāĻāĻžāĻ āύāĻŋā§āĻŽāĻāĻŋ āĻāĻžāύāϤ⧠āĻšāĻŦā§āĨ¤
āĻāĻāĻžā§āĻžāĻ, āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻā§āύā§āϰ āĻļāϰā§āĻāĻāĻžāĻ āύāĻŋā§āĻŽāĻāĻŋ āĻāĻžāύāϤ⧠āĻšāĻŦā§āĨ¤
āĻā§āύ āϏāĻāĻā§āϝāĻž Prime Number āĻāĻŋāύāĻž āϤāĻž āύāĻŋāϰā§āĻŖāϝāĻŧā§āϰ āĻāĻāĻāĻŋ āϏāĻšāĻ āĻĒāĻĻā§āϧāϤāĻŋ:
⤠āĻĒā§āϰāĻĨāĻŽā§, number āĻāĻŋāϰ āĻāĻžāĻāĻžāĻāĻžāĻāĻŋ approximate root(āĻŦāϰā§āĻāĻŽā§āϞ) āϏāĻāĻā§āϝāĻžāĻāĻŋ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤
⤠āĻāϰāĻĒāϰ. numberāĻāĻŋāĻā§ āĻāĻāĻžāϰ root number āĻāϰ āĻā§āϝāĻŧā§ āĻā§āĻ āĻŦāĻž āϏāĻŽāĻžāύ prime numberāĻā§āϞ⧠āĻĻāĻŋā§ā§ āĻāĻžāĻ āĻāϰāϤ⧠āĻšāĻŦā§, āĻāĻā§āώā§āϤā§āϰā§-
– āϝāĻĻāĻŋ,numberāĻāĻŋ prime numberāĻā§āϞā§āϰ āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āĻĻāĻŋā§ā§ evenly divisible āĻšā§, āϤāĻŦā§ numberāĻāĻŋ Prime Number āĻšāĻŦā§ āύāĻžāĨ¤
– āĻāϰ,numberāĻāĻŋ āĻā§āύ āĻā§āώā§āϤā§āϰā§āĻ evenly divisible āύāĻž āĻšāϝāĻŧ, āϤāĻŦā§ numberāĻāĻŋ Prime Number.
Example: Is the number 191 prime?
⤠191 āĻāĻ number āĻāĻŋāϰ āĻāĻžāĻāĻžāĻāĻžāĻāĻŋ approximate root(āĻŦāϰā§āĻāĻŽā§āϞ) āϏāĻāĻā§āϝāĻžāĻāĻŋ- 14, [14² = 196], 14² > 191
⤠14 āϏāĻāĻā§āϝāĻžāĻāĻŋāϰ āĻā§ā§ā§ āĻā§āĻ Prime number āĻā§āϞ⧠āĻšāĻā§āĻā§- 2, 3, 5, 7, 11, 13; āϤāĻžāĻ āĻļā§āϧ⧠āĻāĻā§āϞ⧠āĻĻāĻŋā§ā§āĻ āĻā§āϏā§āĻāĻŋāĻ āĻāϰāϞ⧠āĻšāĻŦā§āĨ¤ āĻāĻĻā§āϰ āĻā§āύāĻāĻŋ āĻĻāĻŋāϝāĻŧā§āĻ 191 evenly divisible āύāĻžāĨ¤ āϤāĻžāĻ 191 āĻāĻāĻāĻŋ prime number.
2 āĻĻāĻŋā§ā§ divisible āĻāĻŋāύāĻž āϤāĻž āĻā§āĻ: āϝāĻĻāĻŋ integer āĻāϰ āĻļā§āώ āϏāĻāĻā§āϝāĻž(units digit)āĻāĻŋ even or 0 āĻšāϝāĻŧāĨ¤
3 āĻĻāĻŋā§ā§ divisible āĻāĻŋāύāĻž āϤāĻž āĻā§āĻ: āϝāĻĻāĻŋ integer āĻāϰ digit āĻā§āϞā§āϰ sum 3 āĻĻāĻŋāϝāĻŧā§ divisible(āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ) āĻšā§āĨ¤
5 āĻĻāĻŋā§ā§ divisible āĻāĻŋāύāĻž āϤāĻž āĻā§āĻ: āϝāĻĻāĻŋ āϤāĻžāϰ āĻļā§āώ āϏāĻāĻā§āϝāĻž(units digit)āĻāĻŋ 0 āĻŦāĻž 5 āĻšāϝāĻŧāĨ¤
7 āĻĻāĻŋā§ā§ divisible āĻāĻŋāύāĻž āϤāĻž āĻā§āĻ: āĻļā§āώ āϏāĻāĻā§āϝāĻžāϤ⧠āĻĄāĻŦāϞ(Double) āĻāϰāϞ⧠āϝāĻž āĻšā§ āϏā§āĻāĻž āĻŽā§āϞ āϏāĻāĻā§āϝāĻžāϰāϰ āĻļā§āώ āϏāĻāĻā§āϝāĻž āĻŦā§āϝāĻžāϤāĻŋāϤ āĻŦāĻžāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻĨā§āĻā§ āĻŦāĻŋā§ā§āĻ(Subtract) āĻĻā§āĻŦ, āĻāϰāĻĒāϰ ā§ āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ(divisible) āĻāϰāĻŦāĨ¤ [āĻŦā§ āϏāĻāĻā§āϝāĻž āĻšāϞ⧠āĻĒāϰā§āϝāĻžā§āĻā§āϰāĻŽā§ āĻāĻāĻžāĻŦā§ āĻāϰāϤ⧠āĻĨāĻžāĻāĻŦ] āϝā§āĻŽāύ- 191 āĻāĻ°Â last digit āĻāĻŋāϰ Double 1â2, āĻŦāĻžāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻĨā§āĻā§ Subtract 19â2=17, āϝāĻž 7 āĻĻā§āĻŦāĻžāϰāĻž divisible āύā§.
11 āĻĻāĻŋā§ā§ divisible āĻāĻŋāύāĻž āϤāĻž āĻā§āĻ: āϝāĻĻāĻŋ āĻĄāĻžāύ āĻĻāĻŋāĻ āĻĨā§āĻā§ odd numbered place āĻā§āϞā§āϰ sum of the digit āĻāĻŦāĻ even numbered place āĻā§āϞā§āϰ sum of the digit āĻāϰ āĻĒāĻžāϰā§āĻĨāĻā§āϝ 0 āĻŦāĻž 11 āĻĻā§āĻŦāĻžāϰāĻž divisible āĻšāϝāĻŧāĨ¤13 āĻĻāĻŋā§ā§ divisible āĻāĻŋāύāĻž āϤāĻž āĻā§āĻ: āĻļā§āώ āϏāĻāĻā§āϝāĻžāϤ⧠4āĻā§āĻŖ āĻāϰāϞ⧠āϝāĻž āĻšā§ āϏā§āĻāĻž āĻŽā§āϞ āϏāĻāĻā§āϝāĻžāϰāϰ āĻļā§āώ āϏāĻāĻā§āϝāĻž āĻŦā§āϝāĻžāϤāĻŋāϤ āĻŦāĻžāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻĨā§āĻā§ āĻŦāĻŋā§ā§āĻ āĻĻā§āĻŦ, āĻāϰāĻĒāϰ 13 āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāĻŦāĨ¤ (āĻŦā§ āϏāĻāĻā§āϝāĻž āĻšāϞ⧠āĻĒāϰā§āϝāĻžā§āĻā§āϰāĻŽā§ āĻāĻāĻžāĻŦā§ āĻāϰāϤ⧠āĻĨāĻžāĻāĻŦāĨ¤)
āϏāĻžāĻā§āĻļāύāĻ 11,7,13 āĻĻāĻŋā§ā§ āĻŦāĻŋāĻāĻžāĻā§āϝ āĻāĻŋāύāĻž āϤāĻž āϏāĻŦāĻžāϰ āĻāĻā§ āĻā§āĻ āĻāϰāĻŦāĨ¤ āĻāĻžāϰāύāϏāĻŽā§āĻš- 2,5 āĻĻāĻŋā§ā§ āĻŦāĻŋāĻāĻžāĻā§āϝ āĻāĻŋāύāĻž āϤāĻž āĻā§āĻā§āϰ āĻĒāϞāĻā§ āĻāĻŽāύāĻŋ āĻŦā§āĻāĻž āϝāĻžā§, āĻāϰ ā§Š āĻĻāĻŋā§ āĻĻāĻŋā§ā§ āĻŦāĻŋāĻāĻžāĻā§āϝ āĻāĻŋāύāĻž āϤāĻžāĻ āĻĻā§āϰā§āϤ āĻŦā§āϰ āĻāϰāĻž āϝāĻžā§āĨ¤
āĻļāϰā§āĻāĻāĻžāĻ:
# āĻĻā§āĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖ āĻāϰāĻžāϰ āύāĻŋā§āĻŽ (Allways āĻāĻžāϰā§āϝāĻāϰ)-
āĻŦāĻŋāĻāϞā§āĻĒ(āϏāĻŦāĻā§ā§ā§ āϏāĻšāĻ āύāĻŋā§āĻŽ): # āĻĻā§āĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖ āĻāϰāĻžāϰ āύāĻŋā§āĻŽ / āĻŦāϰā§āĻ āĻāϰāĻžāϰ āύāĻŋā§āĻŽ(Allways āĻāĻžāϰā§āϝāĻāϰ)-
āĻļāϰā§āĻāĻāĻžāĻ āĻā§āĻŖ āĻāϰāĻžāϰ āύāĻŋāϝāĻŧāĻŽ
# āĻāύ āĻāϰāĻžāϰ āύāĻŋā§āĻŽ-Â
#
āϤāĻŋāύ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖ āĻāϰāĻžāϰ āύāĻŋā§āĻŽ (Allways āĻāĻžāϰā§āϝāĻāϰ)-
āĻ āĻĨāĻŦāĻž,
1-100 āĻāϰ āĻŽāϧā§āϝ⧠prime numbers 25āĻāĻŋ: (4422 3223 21 āĻšāĻā§āĻā§ āĻļāϰā§āĻāĻāĻžāĻ Memorize sequence āĻā§āĻāύāĻŋāĻ)
- 2, 3, 5, 7,
- 11, 13, 17, 19,
- 23, 29,
- 31, 37,
- 41, 43, 47,
- 53, 59,
- 61, 67,71,
- 73, 79,
- 83, 89,
- 97
[Trap(prime nuumber āύā§, āĻāĻŋāύā§āϤ⧠āϤāĻžāĻ āϝā§āĻā§āϞā§āϤ⧠āĻā§āϞ āĻāϰāϤ⧠āĻĒāĻžāϰ): 53, 57, 63, 69, 77, 81, 87, 91, 93]
101-200 āĻāϰ āĻŽāϧā§āϝ⧠prime numbers 21āĻāĻŋ: (4113 1222 14 āĻšāĻā§āĻā§ āĻļāϰā§āĻāĻāĻžāĻ Memorize sequence āĻā§āĻāύāĻŋāĻ)
- 101,103,107,109
- 113
- 127
- 131,137, 139
- 149
- 151, 157
- 163, 167
- 173,179
- 181
- 191,193,197,199
[Trap(prime nuumber āύā§, āĻāĻŋāύā§āϤ⧠āϤāĻžāĻ āϝā§āĻā§āϞā§āϤ⧠āĻā§āϞ āĻāϰāϤ⧠āĻĒāĻžāϰ):[117, 123, 141, 143, 147, 153, 161, 171, 177, 183, 187]
201-300 āĻāϰ āĻŽāϧā§āϝ⧠prime numbers 15āĻāĻŋ: (0132 1222 20 āĻšāĻā§āĻā§ āĻļāϰā§āĻāĻāĻžāĻ Memorize sequence āĻā§āĻāύāĻŋāĻ)
- 211
- 223 227 229
- 233 239 –
- 241
- 251 257
- 263 269 –
- 271 277
- 281 283
(((
āĻŦāϰā§āĻāϏāĻāĻā§āϝāĻž:- āĻā§āύ⧠āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻž āĻšāϞ āĻāĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻĢāϞāĨ¤ āϝā§āĻŽāύ- ⧍ā§Ģ = ā§Ģ x ā§Ģ
āĻŦāϰā§āĻāĻŽā§āϞāĻ āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§āĻ āĻ āϏāĻāĻā§āϝāĻž āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰāϞ⧠āϝ⧠āύāϤā§āύ āϏāĻāĻā§āϝāĻž āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ āϤāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞ āĻšāĻŦā§ āĻĒā§āϰāĻĨāĻŽā§āĻā§āϤ āϏāĻāĻā§āϝāĻžāĻāĻŋāĨ¤ āϝā§āĻŽāύ- 2^⧍ = 4
āĻĻāĻļāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞ-
āϝ⧠āύāĻžāĻŽāĻāĻž āĻāĻžāĻā§ āϞāĻžāĻāĻŦā§:
(āĻŦāϰā§āĻā§āϰ āύāĻžāĻŽāĻāĻž)- [āĻāĻĒā§ āĻŦāϞāĻā§ square āĻā§āϝāĻžāϞ⧠āĻā§āϞāĻž āĻŽā§āĻāϏā§āĻĨ āĻāϰ⧠āĻĢā§āϞāϤā§]
-  1² = 1
- 2² = 4
- 3² = 9
- 4² = 16
- 5² = 25
- 6² = 36
- 7² = 49
- 8² = 64
- 9² = 81
- 10² = 100
- 11² = 121
- 12² = 144
- 13² = 169
- 14² = 196
- 15² = 225
- 16² = 256
- 17² = 289
- 18² = 324
- 19² = 361
- 20² = 400
- 25² = 625
āĻļāϰā§āĻāĻāĻžāĻ āĻāϰāĻŦ-
- āĻĻā§āĻ āĻ āĻā§āĻā§āϰ āϝā§āĻā§āύ⧠āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻÂ
- āϤāĻŋāύ āĻ āĻā§āĻā§āϰ āϝā§āĻā§āύ⧠āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻ
(āĻāύā§āϰ āύāĻžāĻŽāĻāĻž)-
- Â 1Âŗ = 1
- 2Âŗ = 8
- 3Âŗ = 27
- 4Âŗ = 64
- 5Âŗ = 125
- 6Âŗ = 216
- 7Âŗ = 343
- 8Âŗ = 512
- 9Âŗ = 729
- 10Âŗ = 1000
āĻļāϰā§āĻāĻāĻžāĻ āĻāϰāĻŦ-
- āĻĻā§āĻ āĻ āĻā§āĻā§āϰ āϝā§āĻā§āύ⧠āϏāĻāĻā§āϝāĻžāϰ āĻāύÂ
- āϤāĻŋāύ āĻ āĻā§āĻā§āϰ āϝā§āĻā§āύ⧠āϏāĻāĻā§āϝāĻžāϰ āĻāύ
āĻļāϰā§āĻāĻāĻžāĻ – https://youtu.be/I1Ago5gSHeo
——————
ā§§ā§Ļ-⧍ā§Ļ āĻāϰ āύāĻŋāĻā§āϰ āĻĻā§āĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻā§āύāĻ
——————
*** 2 āĻāϰ āĻĒāĻžāĻā§āĻžāϰā§āϰ āύāĻžāĻŽāĻāĻž āĻļāĻŋāĻāĻž:
-  2š = 2
- 2² = 4
- 2Âŗ = 8
- 2â´ = 16
- 2âĩÂ = 32
- 2âļ = 64
- 2⡠= 128
- 2⸠= 256
- 2âš = 512
- 2šâ°= 1024
*** 9 āĻāϰ āĻĒāĻžāĻā§āĻžāϰā§āϰ āύāĻžāĻŽāĻāĻž āĻļāĻŋāĻāĻž:
- 9š = 9
- 9² = 81
- 9Âŗ = 729
*** 7 āĻāϰ āĻĒāĻžāĻā§āĻžāϰā§āϰ āύāĻžāĻŽāĻāĻž āĻļāĻŋāĻāĻž:
- 7š = 7
- 7² = 49
- 7Âŗ = 343
- 7â´ = 2401
*** 5 āĻāϰ āĻĒāĻžāĻā§āĻžāϰā§āϰ āύāĻžāĻŽāĻāĻž āĻļāĻŋāĻāĻž:
- 5š = 5
- 5² = 25
- 5Âŗ = 125
- 5â´ = 625
- 5âĩ = 3125
āĻ āĻāϰ āĻĒā§āϰā§āĻŖ āĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻž 25 āĻāϰ āĻĒāĻžāĻā§āĻžāϰā§āϰ āύāĻžāĻŽāĻāĻž āĻļāĻŋāĻāĻž:
- š =
- ² =
- Âŗ =
- â´ =
- âĩ =
- âļ =
- ⡠=
———–
Co-prime numbers(āϏāĻš-āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž): āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāĻā§ Co-prime number āĻŦāϞāĻž āĻšāĻŦ, āϝāĻĻāĻŋ āϤāĻžāĻĻā§āϰ h.c.f 1 āĻšā§āĨ¤ āĻ āϰā§āĻĨāĻžā§ āϝāĻāύ ā§§ āĻāĻžā§āĻž āĻĻā§āĻāĻāĻž āϏāĻāĻā§āϝāĻžāϰ āϏāĻžāϧāĻžāϰāĻŖ āĻā§āĻĒāĻžāĻĻāĻ āĻĨāĻžāĻā§āύāĻž, āϤāĻāύ āϤāĻžāϰāĻž āĻĒāϰāϏā§āĻĒāϰ āϏāĻšāĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžāĨ¤ // Consider a set of two numbers, if they have no positive integer that can divide both, other than 1, the pair of numbers is co-prime.
Example: For 21 and 27:
- The factors of 21 are 1, 3, 7, 21.
- The factors of 27 are 1, 3, 9, 27.
Here 21 and 27 have two common factors; they are 1 and 3. HCF is 3 and they are not co-prime.
Co prime with | Co prime numbers pairs |
1 | (1, 2), (1, 3), (1, 4), (1, 5) (1, 6),âĻ.., (1, 20),âĻ. |
2 | (2, 3), (2, 5), (2, 7), (2, 9), âĻ, (2, 15),âĻ.. |
3 | (3, 4), (3, 5), (3, 7), (3, 10), (3, 11),âĻ., (3, 20),âĻ |
4 | (4, 5), (4, 7), (4, 9), (4, 11), (4, 13), (4, 15),âĻ. |
5 | (5, 6), (5, 7), (5, 8), (5, 9), (5, 11), (5, 12),âĻ |
Co-prime Numbers from 1 to 100: There are several pairs of co-primes from 1 to 100 which follow the above properties. Some of them are:
(13, 14)
(28, 57)
(1, 99)
(2, 97)
(46, 67)
(75, 41) and so on.
Composite numbe(āĻ -āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž/ āϝā§āĻāĻŋāĻ āϏāĻāĻā§āϝāĻž): 1 āĻ āĻ āύāĻžāĻŽā§āĻŦāĻžāϰ āĻāĻžā§āĻžāĻ āĻāĻ/āĻāĻāĻžāϧāĻŋāĻ number āĻĻāĻŋā§ā§ evenly divisible āĻšāϞ⧠āϏā§āĻāĻŋ Composite number. // āĻāĻāĻžāϧāĻŋāĻ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻĢāϞ āĻšāĻŋāϏā§āĻŦā§ āϝā§āϏāĻāϞ āϏāĻāĻā§āϝāĻžāĻā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āϝāĻžā§, āϏā§āĻā§āϞā§āĻ āϝā§āĻāĻŋāĻ āϏāĻāĻā§āϝāĻžāĨ¤ āϝā§āĻŽāύ- 4.6,8,9,12, 10=5×2 etc.
# of Integers in Interval Exercise: To find the number of integers in an interval, simply use the formula below:
Last Numberâ First Number +1
For example, to find the number of integers from 27 to 84, inclusive…
84â27+1=58
NOTE: The word “inclusive” means you include the 27 and 84 in the range and the word “exclusive” means you don’t. If you see the word exclusive, you would instead do:
83â28+1=56
Practice:
Q: Which of the following is a prime number?
        (a) 143                    (b) 289                    (c) 117                    (d) 359
Solution:
Clearly,
143 = 13 X 11 So, 143 is not prime.
289 = 17 X 17 So, 289 is not prime.
117 = 39 X 3 Â Â So, 117 is not prime.
359<(20)2; prime numbers less than 20 are 2, 3, 5. 7, 11, 13, 17, 19.
And, 359 is not exactly divisible by any of them.
So, 359 is a prime number.
Q:
(A) Quantity A is greater.
(B) Quantity B is greater.
(C) The two quantities are equal.
(D) The relationship cannot be determined from the information given.
Solution:
the correct answer is: Choice A, Quantity A is greater.
Explanation: A>B
Quantity A is 29. Because, 29 is the least prime number greater than 24 (when the integers greater than 24 are 25, 26, 27, 28 are not prime numbers).
Quantity B is 23. Because, 29 is the greatest
Q: If a is the smallest prime number greater than 21 and b is the largest prime number less than 16, then ab =
A) 299
B) 323
C) 330
D) 345
E) 351
Solution:
Now, a is the smallest prime number greater than 21 (a = 23)
Similarly, b is the largest prime number lesser than 16 (b = 13)
Therefore, the value of ab = 23*13 = 299(ends with a 9 – Only option in answer options is Option A.
#
Main Topics: Fractions, Decimals, ||Â Ratios-Proportion, || Percent
Extend Topics: Fractions, Decimals || Exponents, Square, Cube, Square root, Cube root || Real Number, Number Line, Absolute Value, Reciprocals || Ratios-Proportion || Percent
Inequalities and Absolute Value
negetive exponent â Negetive Number
āĻā§ā§āĻāĻāĻž āĻŽāĻžāύ āĻŽā§āĻāϏā§āĻĨ āĻāϰāϤ⧠āĻšāĻŦā§-
odd order root
even order root
[a < a3 < a4 < a2]
(-1 < a < 0)
#
Average, Ages
Numbers
Time & Distance
Work Problems
Set
Mixture Problems
#
Algebra
# interest
Geometry
Basic terms
#
4. Data Analysis
Quartiles, Standard Deviation and Normal Distribution
āĻāĻā§ āĻā§āύā§āĻāĻŋ-
- sets
- Central tendency
āĻāĻāĻā§ āĻāĻžāύāĻŦ-
- Quantiles
- standard deviation
- Normal distribution(+ visualization)
Data Analysis āĻ āĻāĻŽāĻžāĻĻā§āϰ āĻāĻ āϏā§āĻ āĻĄā§āĻāĻž āĻĻā§ā§āĻž āĻĨāĻžāĻā§āĨ¤ āϝā§āĻŽāύ- {2,5,7,9,13, 27, 39}
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, Central tendency āĻŦāϞāϤ⧠meaw(average) āĻāĻŋāĻāĻžāĻŦā§ āĻŦā§āϰ āĻāϰāϤ⧠āĻšā§ āϤāĻž āĻŦā§āĻāĻŋāĨ¤
āĻĄā§āĻāĻž āϏā§āĻ āĻāϰ āĻĒā§āϰāϤā§āϝā§āĻāĻāĻž elements āϝā§āĻ āĻāϰ⧠⧍ āĻĻāĻŋā§ā§ āĻāĻžāĻ āĻāϰāϞā§āĻ āĻāĻŽāϰāĻž meaw(average) āĻā§āϝāĻžāϞā§āĻāĻž āĻĒā§ā§ā§ āϝāĻžāĻāĨ¤ āĻāĻā§āώā§āϤā§āϰā§, āĻā§āύ⧠āύāĻžāĻŽā§āĻŦāĻžāϰā§āϰ āϰāĻŋāĻĒāĻŋāĻā§āĻļāύ āĻĨāĻžāĻāϞ⧠āϏā§āĻāĻž mod āĻšāĻŋāϏā§āĻŦā§ āĻāĻžāĻ āĻāϰā§āĨ¤
Medium āϝāĻāύ āĻŦā§āϰ āĻāϰā§āĻāĻŋ āϤāĻāύāĻ meaw(average) āĻā§āϝāĻžāϞ⧠āĻā§āύāĻāĻž āϏā§āĻāĻž āĻŦā§āϰ āĻāϰā§āĻāĻŋāĨ¤
Central tendency āĻŦā§āϰ āĻāϰāĻžāϰ āĻāĻ āϝ⧠āĻšāĻŋāϏāĻžāĻŦ āύāĻŋāĻāĻžāĻļ same way āĻāĻžāĻ āĻšāϞ Quantiles.
Quantiles āĻāϰ āĻāĻžāĻ āĻšāϞ āĻāĻŽāĻžāĻĻā§āϰ āϝ⧠āĻĄā§āĻāĻžāĻā§āϞ⧠āϰā§ā§āĻā§ āĻĄā§āĻāĻžāĻā§āϞā§āĻā§ āϏāĻŽāĻžāύāĻāĻžāĻā§ āĻāĻžāĻ āĻāϰ⧠āĻĢā§āϞāĻžāĨ¤ āϝāĻžāϤ⧠āĻāϰāĻ exact way āϤ⧠āϏāϞāĻŋāĻāĻļāύ āĻŦā§āϰ āĻāϰāĻž āϝāĻžā§āĨ¤
āϧāϰāĻŋ, āĻāĻŽāĻžāĻĻā§āϰ āĻĄā§āĻāĻž ā§§ā§ŠāĻāĻž{4, 8, 12, 15, 18, 21, 27, 39, 52, 63, 67, 77}, āĻāĻā§āϞāĻžāĻā§ āϏāĻŽāĻžāύ ā§ĒāĻāĻžāĻā§ āĻāĻžāĻ āĻāϰāϤ⧠āϝā§ā§ā§ ā§ŠāĻŦāĻžāϰ āĻāĻžāĻāϤ⧠āĻšā§(Q1,Q2,Q3)āĨ¤ āĻāĻāĻžāύā§, Q2 āĻšāĻā§āĻā§ total āĻĄā§āĻāĻž(A) āĻāϰ medium. [Q1 lower set(M).]
Meaw, mediaw, mode, Quantile
āĻĒā§āϰāĻļā§āύāĻ
ā§§āĻŽ āĻāĻžāĻ āĻšāĻŦā§, āĻĄā§āĻāĻžāĻā§āϞā§āĻā§ āϏāĻžāĻāĻŋā§ā§ āύā§ā§āĻž
Standard Deviation:
Probability
Sub: topic in Probability:-
- General Formula
- Notation
- Complement
- OR rule
- And rule
- Mutually exclusive
- Independent event
- Conditional probability
Probability General Formula = no. of success(āϝ⧠āĻĢāϞāĻžāĻĢāϞāĻāĻž āĻāĻžāĻā§āĻāĻŋ āĻ āĻĢāϞāĻžāĻĢāϞ āĻāϝāĻŧāĻāĻž āĻāĻā§) / no. of outcome(total)
āĻā§āύ⧠āϰāĻžāĻā§āύ,, # = number; āĻ āϰā§āĻĨāĻžā§ āĻšā§āϝāĻžāĻļāĻā§āϝāĻžāĻ āĻĻāĻŋāϝāĻŧā§ āύāĻžāĻŽā§āĻŦāĻžāϰ āĻā§ āĻŦā§āĻāĻžāϝāĻŧāĨ¤
āĻāĻĻāĻžâ āϞā§āĻĄā§āϤ⧠ā§ŦāĻāĻž āĻā§āϝāĻžāϞ⧠āĻĨāĻžāĻā§- 1,2,3,4,5,6
āϧāϰāĻŋ, āĻāĻā§āώā§āϤā§āϰā§, 3 āĻāϏāĻžāϰ āϏāĻŽā§āĻāĻžāĻŦāύāĻž āĻāϤ āϤāĻž āĻāĻžāύāϤ⧠āĻāĻžāĻā§āĻāĻŋāĨ¤
āϤāĻžāĻšāϞā§, P(3) = 1/6
(āĻāĻžāϰāĻŖ 3 āĻāĻāĻžāύ⧠āĻāĻāĻāĻžāĻ āĻāĻā§, āϤāĻžāĻ 3 āĻāϏāĻžāϰ āϏāĻŽā§āĻāĻžāĻŦāύāĻž 1 āĻŦāϏāĻžāύ⧠āĻšā§ā§āĻā§)
āĻāĻāϰā§āĻāĻŋ āĻāĻžāϰā§āϏāύ⧠āĻāϰāϞā§,
Event, A = 3
â´ P(A) = 1/6
Complement A = 1,2,4,5,6
â´ P(A’) = 5/6 = 1â1/6 = 1âP(A)
āĻāĻāĻžāύā§, Complement A āĻāϰ āĻŽāĻžāύ⧠āĻšāĻā§āĻā§ A āĻŦāĻžāĻĻā§(āĻŦāĻžāĻĻāĻŦāĻžāĻāĻŋ) āϏāĻŦāĻāĻŋāĻā§āĨ¤
# or – āĻāϰ āĻŽāĻžāύ⧠(āĻāĻāĻž āĻ āĻĨāĻŦāĻž āĻāĻāĻž), + āĻŦā§āĻāĻžā§, āĻĻā§āĻāĻāĻž āĻāύā§āĻĄāĻŋāĻļāύ āĻāϰ āĻŽāϧā§āϝ⧠āĻšā§ āĻāĻāĻž, āύāĻž āĻšā§ āĻāĻāĻžāĨ¤(āĻ āϰā§āĻĨāĻžā§ āϝā§āĻā§āύ⧠āĻāĻāĻāĻž āĻšāϞā§āĻ āĻšāϞ)
P(3 or 6) = B = 3 or 6 āĻšāϞā§, [āĻāĻāĻžāύā§, Dice Roll ā§§ āĻŦāĻžāϰ āĻāϰāĻž āĻšāĻā§āĻā§]
â´ P(B) = 1/6 + 1/6 = 1/3 (āĻāĻāĻžāύā§, Probability āĻŦā§āĻļāĻŋ)
# and – āĻāϰ āĻŽāĻžāύ⧠(āĻāĻāĻž āĻāĻāĻž āĻĻā§āĻāĻžāĻ), X āĻŦā§āĻāĻžā§āĨ¤
P(3 and 6) = C = 3 and 6 āĻšāϞā§, [āĻāĻāĻžāύā§, Dice Roll 2 āĻŦāĻžāϰ āĻāϰāĻž āĻšāĻā§āĻā§]
â´ P(C) = 1/6 X 1/6 = 1/36 (āĻāĻāĻžāύā§, Probability āĻāĻŽ)
āϝā§āĻŽāύ-
- A AND B = 1 (āĻāĻā§āώā§āϤā§āϰā§, A=1, B=1)
- OR Gate āϏāĻžāϰā§āĻāĻŋāĻā§ A OR B = 1 (A=1 āĻšāϞ⧠B=0,A=0 āĻšāϞ⧠B=1)
independent: āĻāĻāĻž āĻŦā§āĻāϤ⧠āĻšāϞ⧠āĻāĻā§ Mutual exclusive āĻŦā§āĻāϤ⧠āĻšāĻŦā§āĨ¤
Mutual exclusive: āĻāĻāĻāĻž āĻšāϞ⧠āĻāϰā§āĻāĻāĻž āĻšāĻŦā§ (āĻāĻā§āώā§āϤā§āϰ⧠āĻ āĻŦāĻļā§āϝāĻ āĻāĻāύāĻž āĻĻā§āĻāĻŦāĻžāϰ āĻāĻāϤ⧠āĻšāĻŦā§)āĨ¤ āύāĻž āĻāϰ, Mutual exclusive āĻšāϞā§āĻ or āĻāĻž āĻšāĻŦā§, āĻāĻŋāύā§āϤ⧠or āĻĻā§āĻāϞā§āĻ Mutual exclusive āĻŦāϞāĻž āϝāĻžāĻŦā§ āύāĻžāĨ¤
āϝā§āĻŽāύ- 1,2,3,4,5,6 (Roll 2 dice)
āϝāĻĻāĻŋ A = 3, B = 6 āĻšā§ āϤāĻžāĻšāϞ⧠P(A) āĻ P(B) āĻšāĻā§āĻā§Â āĻĒā§āϰāϤā§āϝā§āĻāĻāĻž āĻāĻā§āĻāĻāĻž independent.
independent:
conditional probability:
Parabola || Exceptional FormulaÂ