GRE Quant (Complete Preparation) All about 𝐏𝐚đĢ𝐭 𝟑

𝐏𝐚đĢ𝐭 𝟑: 𝐐𝐮𝐚𝐧𝐭đĸ𝐭𝐚𝐭đĸđ¯đž 𝐑𝐞𝐚đŦ𝐨𝐧đĸ𝐧𝐠 (Atleast, 160 āĻĒ⧇āϤ⧇ āĻšā§‡āĻ˛ā§āĻĒ āĻ•āϰāĻŦ⧇ āĻāĻŽāύ āϏāĻžāĻœā§‡āĻļāύ)

Exam Format

āϏāĻŽā§Ÿāσ ā§Ēā§­ āĻŽāĻŋāύāĻŋāϟ (⧍⧧+⧍ā§Ŧ, āĻĻ⧁āχāϟāĻž āϏ⧇āĻ•āĻļāύ āĻŽāĻŋāϞ⧇)

āĻĒā§āϰāĻļā§āύāσ ⧍⧭ āϟāĻŋ āĻĒā§āϰāĻļā§āύ(⧧⧍+ā§§ā§Ģ, āĻĻ⧁āχāϟāĻž āϏ⧇āĻ•āĻļāύ āĻŽāĻŋāϞ⧇)āĨ¤

āĻŽāĻžāĻ°ā§āĻ•āσ 130–170, in 1-point increments [āĻŽā§‚āϞāϤ ā§Ēā§Ļ āύāĻŽā§āĻŦāϰ]

Scoring(difficulty level): āĻŽāύ⧇ āϰāĻžāĻ–āĻŦ⧇, quant āĻ- ā§§āĻŽ āϏ⧇āĻ•āĻļāύ⧇ āĻ­āĻžāϞ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇, āϤāĻžāĻšāϞ⧇ āĻ“āĻ­āĻžāϰāĻ…āϞ āĻ­āĻžāϞ āĻ¸ā§āϕ⧋āϰ āϏāĻŽā§āĻ­āĻŦāĨ¤
quant āĻ-ā§§āĻŽ āϏ⧇āĻ•āĻļāύ⧇ 12 questions āĻāϰ difficulty āϞ⧇āϭ⧇āϞ(āφāύ⧁āĻŽāĻžāύāĻŋāĻ•)-

  • difficulty level:1:- 1/2 āϟāĻž
  • difficulty level 2:- 1/2 āϟāĻž
  • difficulty level 3:- 6/7 āϟāĻž
  • difficulty level 4:- 1 āϟāĻž
  • difficulty level 5:- 1 āϟāĻž

quant āĻ-⧍⧟ āϏ⧇āĻ•āĻļāύ⧇ 15 questions āĻāϰ difficulty āϞ⧇āϭ⧇āϞ(āφāύ⧁āĻŽāĻžāύāĻŋāĻ•)-

  • difficulty level 1:- 1/2 āϟāĻž
  • difficulty level 2:- 1/2 āϟāĻž
  • difficulty level 3:- 3/4 āϟāĻž
  • difficulty level 4:- 3/4 āϟāĻž
  • difficulty level 5:- 5/6 āϟāĻž

Types of Questions: Quantitative Comparison, Multiple Choice (One Ans), Multiple Choice(One or More), Numeric Entry.

Quantitative Comparison: āĻĻ⧁āχāϟāĻž Quantity āĻĻ⧇āĻ“ā§ŸāĻž āĻĨāĻžāĻ•āĻŦ⧇- Quantity A āĻ“ Quantity B āĨ¤ āĻāĻ•ā§āώāĻ¤ā§āϰ⧇, āĻ•āĻ–āύ⧋ āĻāĻ•āϟāĻŋ āĻŦ⧜ āĻšāϤ⧇ āĻĒāĻžāϰ⧇/āϛ⧋āϟ āĻšāϤ⧇ āĻĒāĻžāϰ⧇ / āĻĻ⧁āχāϟāĻžāχ āϏāĻŽāĻžāύ āĻšāϤ⧇ āĻĒāĻžāϰ⧇ / undefined āĻāϕ⧇āĻ•āĻŦāĻžāϰ āĻāϕ⧇āĻ•āϰāĻ•āĻŽ result – āĻāχ āϚāĻžāϰ āϰāĻ•āĻŽā§‡āϰ answer āĻšāϤ⧇ āĻĒāĻžāϰ⧇āĨ¤

Numeric Entry: āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ answerāϟāĻž type āĻ•āϰ⧇ āĻŦāϏāĻžāϤ⧇ āĻšā§ŸāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āφāĻŦāĻžāϰ āĻ…āύ⧇āĻ• āϏāĻŽā§Ÿ āĻ¸ā§āĻĒ⧇āϏāĻŋāĻĒāĻŋāĻ• āĻŦāϞ⧇ āĻĻ⧇āĻ“ā§ŸāĻž āĻšā§Ÿ āϝ⧇āĻŽāύ- āĻĻāĻļāĻŽāĻŋāϕ⧇āϰ āĻĒāϰ ⧍ āĻĄāĻŋāϜāĻŋāϟ āϰāĻžāĻ–āĻŦ⧇āύ, nearest whole āύāĻžāĻŽā§āĻŦāĻžāϰ⧇ āϰāĻžāĻ–āĻŦ⧇āύ(āϝ⧇āĻŽāύ- āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ 16.5 āĻĨāĻžāĻ•āϞ⧇ 17 āϞāĻŋāĻ–āϤ⧇ āĻšāĻŦ⧇) āχāĻ¤ā§āϝāĻžāĻĻāĻŋāĨ¤ [āĻāϗ⧁āϞāĻž ⧍āϟāĻžāϰ āĻŽāϤ āφāϏ⧇]

Multiple Choice (One Ans): āϝ⧇āĻ•ā§ŸāϟāĻž/āĻĒāĻžāρāϚāϟāĻž āĻ…āĻĒāĻļāύ āĻĨāĻžāϕ⧇, āϝāĻžāϰ āĻŽāĻ§ā§āϝ āĻĨ⧇āϕ⧇ āĻļ⧁āϧ⧁āĻŽāĻžāĻ¤ā§āϰ āĻāĻ•āϟāĻžāχ correct answer āĻšāĻŦ⧇āĨ¤ āĻāĻ•ā§āώāĻ¤ā§āϰ⧇, āĻļ⧁āϧ⧁āĻŽāĻžāĻ¤ā§āϰ āĻŦ⧃āĻ¤ā§āϤāĻžāĻ•āĻžāϰ shape āĻāϰ answer option āĻĻā§‡ā§ŸāĻž āĻĨāĻžāϕ⧇āĨ¤

Multiple Choice(One or More): āϝ⧇āĻ•ā§ŸāϟāĻž āĻ…āĻĒāĻļāύ āĻĨāĻžāϕ⧇, āϤāĻžāϰ āĻŽāĻ§ā§āϝ āĻĨ⧇āϕ⧇ āĻ•ā§Ÿā§‡āĻ•āϟāĻž āĻ•āĻŋāĻ‚āĻŦāĻž āĻāĻ•āϟāĻž correct answer āĻšāĻŦ⧇āĨ¤ āĻāĻ•ā§āώāĻ¤ā§āϰ⧇, āĻĻ⧁āχāϟāĻž āϜāĻŋāύāĻŋāϏ āĻĻ⧇āϖ⧇ āĻ āϟāĻžāχāĻĒāϟāĻž āĻŦ⧁āĻāĻž āϝāĻž- (ā§§) indicate all such values (⧍) square shape āĻāϰ answer option āĻĻā§‡ā§ŸāĻž āĻĨāĻžāϕ⧇āĨ¤ [āĻĒāϰ⧀āĻ•ā§āώāĻžā§Ÿ āĻāϗ⧁āϞāĻž ⧍-ā§ŠāϟāĻžāϰ āĻŦ⧇āĻļāĻŋ āφāϏāĻŦ⧇ āύāĻž]

Number of Questions(Approximate): āĻĒāϰ⧀āĻ•ā§āώāĻž āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āĻĒā§āϰāĻļā§āύ āĻĒā§āϝāĻžāϟāĻžāϰ āĻšāϝāĻŧ⧇ āĻĨāĻžāϕ⧇āĨ¤ āϝ⧇āĻŽāύ-

  • Section 1: Quantitative Comparison 4āϟāĻž + Numeric Entry 1/2āϟāĻž + Multiple Choice(One or More) 1/2āϟāĻž
  • Section-2: Quantitative Comparison 5āϟāĻž + Numeric Entry 1/2āϟāĻž + Multiple Choice(One or More) 1/2āϟāĻž

āϝ⧇ āϟāĻĒāĻŋāĻ• āĻšāϤ⧇ āϝ⧇āĻ•ā§ŸāϟāĻŋ āĻĒā§āϰāĻļā§āύ āĻ•āϰāĻž āĻšā§Ÿāσ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ Types of Questions āĻĨāĻžāĻ•āĻžā§Ÿ, (approximately) ā§§āĻŽ āϏ⧇āĻ•āĻļāύ⧇ ā§ĒāϟāĻž math āφāϰ ⧍⧟ āϏ⧇āĻ•āĻļāύ⧇ ā§ĢāϟāĻž math āĻāϰāĻ•āĻŽ āĻĨāĻžāĻ•āϤ⧇ āĻĒāĻžāϰ⧇(āĻāϰ āĻŦā§āϝāϤāĻŋāĻ•ā§āϰāĻŽ āĻšāϤ⧇ āĻĒāĻžāϰ⧇)āĨ¤ + ā§§āĻŽ āϏ⧇āĻ•āĻļāύ⧇āϰ āϏ⧇āĻŸā§‡ must ā§ŠāϟāĻž Data interpretation āĻŽā§āϝāĻžāĻĨ questions āφāϏ⧇, ⧍⧟ āϧāĻžāĻĒ⧇ āφāĻŦāĻžāϰ āĻāϟāĻž āφāϏāϤ⧇ āĻĻ⧇āĻ–āĻž āϝāĻžā§Ÿ āύāĻžāĨ¤ +

Quant Math āϏāĻŋāϞ⧇āĻŦāĻžāϏāσ

1. Arithmetic (āĻĒāĻžāϟāĻŋāĻ—āύāĻŋāϤ)
1.1 Integers(/Number System)
1.2 Fractions
1.3 Exponents and Roots
1.4 Decimals
1.5 Real Numbers
1.6 Ratio
1.7 Percent

āφāĻŽāĻžāĻĻ⧇āϰ āϏ⧁āĻŦāĻŋāϧāĻžāĻ°ā§āĻĨ⧇ Arithmetic āĻāϰ āĻāχ āϏāĻŋāϞ⧇āĻŦāĻžāϏ āĻāϰ āĻŦāĻŋāĻ¸ā§āϤāĻžāϰāĻŋāϤ āĻ­āĻžāĻ°ā§āϏāύāϕ⧇ āĻĻ⧁āχāϟāĻž āĻĒāĻžāĻ°ā§āĻŸā§‡ āĻ­āĻžāĻ— āĻ•āϰ⧇ āĻĒ⧜āĻŦ- 

Topics Part 1: Basic Math Terms & Symbols || Integer(/Number System): Positive, Negative || Basic operations: Odd, Even,Mutiply,Division || Consecutive numbers|| Divisibility {Unit Digit + Remainder} || Factors, Multiples || Prime Numbers, || HCF and LCM

Topics Part 2: Fractions, Decimals || Exponents, Square, Cube, Square root, Cube root || Real Number, Number Line, Inequalities and Absolute Value, Reciprocals || Ratios  || Proportion || Percent

2. Algebra (āĻŦā§€āϜāĻ—āĻŖāĻŋāϤ)
2.1 Algebraic Expressions
2.2 Rules of Exponents
2.3 Solving Linear Equations
2.4 Solving Quadratic Equations
2.5 Solving Linear Inequalities
2.6 Functions
2.7 Applications
2.8 Coordinate Geometry
2.9 Graphs of Functions

3. Geometry (āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋ)
3.1 Lines and Angles
3.2 Polygons
3.3 Triangles
3.4 Quadrilaterals
3.5 Circles
3.6 Three-Dimensional Figures

4. Data Analysis (āĻĄā§‡āϟāĻž āĻāύāĻžāϞāĻžāχāϏāĻŋāϏ)
4.1 Methods for Presenting Data
4.2 Numerical Methods for Describing Data
4.3 Counting Methods
4.4 Probability
4.5 Distributions of Data, Random Variables, and Probability Distributions
4.6 Data Interpretation Example

(For Exam Day Preparation: selected topics) āϝ⧇āϏāĻŦ āϟāĻĒāĻŋāĻ• āĻšāϤ⧇ āĻĒā§āϰāĻļā§āύ āφāϏāĻžāϰ āϏāĻŽā§āĻ­āĻžāĻŦāύāĻž āĻŦ⧇āĻļāĻŋ-

 

āĻŦāχ (āĻĒā§āϰāĻ¸ā§āϤ⧁āϤāĻŋ)

Preparation: āϏāĻŋāϰāĻŋāϝāĻŧāĻžāϞāĻŋ āĻĻ⧁āχāϟāĻž āĻ¸ā§āĻŸā§‡āĻĒ āĻ…āύ⧁āϏāϰāĻŖ āĻ•āϰ⧇/āĻĒāĻĻā§āϧāϤāĻŋāϤ⧇ āĻĒā§āϰāĻŋāĻĒāĻžāϰ⧇āĻļāύ āύ⧇āĻŦ:-

  1. â€ĸ [Concept āϜāĻžāύāĻžāϰ āϜāĻ¨ā§āϝ] :Âģ Basic Knowledge Âģ â€ĸ Important Formulas Âģ â€ĸ Shortcut Techniques
  2. â€ĸ [Practice āĻāϰ āϜāĻ¨ā§āϝ] :Âģ Practice Problems Âģ â€ĸ Test Taking Strategies Âģ â€ĸ Personal Hand Note(Mistakes & improvement)

1. [Concept āĻāϰ āϜāĻ¨ā§āϝ] āφāĻĒāύāĻŋ āϝāĻĻāĻŋ āφāϗ⧇ āĻŽā§āϝāĻžāĻĨ āĻĒāĻĄāĻŧāĻž āύāĻž āĻĨāĻžāϕ⧇, āϤāĻžāĻšāϞ⧇ –
ā§§) 𝐌𝐚𝐧𝐡𝐚𝐭𝐭𝐚𝐧 𝟏-𝟔 đŦ𝐞đĢđĸđŦ [(𝐌𝐚𝐧𝐡𝐚𝐭𝐭𝐚𝐧 āĻāϰ GRE All the Quant āĻŦāĻž 𝐌𝐚𝐧𝐡𝐚𝐭𝐭𝐚𝐧 āĻāϰ Math Strategies) – āĻāχ ā§ŠāϟāĻž āĻŦāχ-āχ āĻāĻ•āχ āϧāϰāύ⧇āϰ, āϤāĻžāχ āϝ⧇āϕ⧋āύ⧋ āĻāĻ•āϟāĻž āĻĢāϞ⧋ āĻ•āϰāϞ⧇āĻ‡Â  āĻšāĻŦ⧇]

⧍) 𝐌𝐚𝐧𝐡𝐚𝐭𝐭𝐚𝐧 𝟓đĨ𝐛 (āĻŦāĻŋāϗ⧇āύāĻžāϰ āϞ⧇āĻŦ⧇āϞ⧇ āĻšā§‡āĻ˛ā§āĻĒ āĻ•āϰ⧇) [āĻāϟāĻžāϰ ⧍āϟāĻž edition āφāϛ⧇, āϝ⧇āϕ⧋āύ⧋ āĻāĻ•āϟāĻž āĻĒ⧜āϞ⧇āχ āĻšāĻŦ⧇] āϤāĻŦ⧇- Manhattan 5lb (3rd edition) : Chapter 7-30 [āĻāϟāĻž āϏ⧁āĻŦāĻŋāϧāĻž āĻšāĻšā§āϛ⧇ topic wise āĻĻā§‡ā§ŸāĻž āφāϛ⧇, āφāϰ āĻĒāϰāĻžāĻŽāĻ°ā§āĻļ āĻĨāĻžāĻ•āĻŦ⧇ āĻ āĻŦāĻ‡ā§Ÿā§‡āϰ āĻĒ⧇āĻ›āύ⧇ āĻĨāĻžāĻ•āĻž solution āϗ⧁āϞ⧋ āĻĢāϞ⧋ āύāĻž āĻ•āϰāĻž āĻ•āĻžāϰāĻŖ āϐāϗ⧁āϞāĻž āĻšā§āĻĻāĻžāχ āĻĒ⧇āρāϚāĻŋā§Ÿā§‡ āϜāϟāĻŋāϞ āĻ•āϰ⧇ āĻĻ⧇āĻ“āϝāĻŧāĻž āĻšā§Ÿā§‡āϛ⧇, āϤāĻžāχ āĻ…āύāϞāĻžāχāύ āĻĨ⧇āϕ⧇ āϏāĻ˛ā§āϝ⧁āĻļāύ āĻŦ⧇āϰ āĻ•āϰāĻžāϟāĻžāχ āĻŦ⧇āĻ¸ā§āϟ]
(āĻ•ā§āϝāĻžāϟāĻžāĻ—āϰāĻŋ)
1. Arithmetic – 7, 11, 12, 13, 15, 20 (Total 6chapters)
2. Algebra – 8,9,10,14,16, 17,18,19 (Total chapters)
3. Geometry – 25, 26, 27, 28, 29 (Total Schapters)
4. Data Interpretation – 21, 22, 23, 24 (Total 4chapters)
Âģ āĻŦ⧇āϏāĻŋāĻ• āϜāĻŋāύāĻŋāϏāϗ⧁āϞ⧋āϰ āϧāĻžāϰāĻŖāĻž āĻāĻ•āĻĻāĻŽ āĻ•ā§āϞāĻŋ⧟āĻžāϰ āĻļ⧇āĻ–āĻžāϰ āϜāĻ¨ā§āϝ– Saifurs English, Khairul’s Basic Math (āĻĒāĻžāϟāĻŋāĻ—āĻŖāĻŋāϤ, āĻŦā§€āϜāĻ—āĻŖāĻŋāϤ āĻāĻŦāĻ‚ āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋ āĻšā§āϝāĻžāĻĒā§āϟāĻžāϰ) āĻŦāĻž NCTB Class Five to Nine Math Books (If Possible)
Âģ āĻļāĻ°ā§āϟāĻ•āĻžāϟ āĻļ⧇āĻ–āĻžāϰ āϜāĻ¨ā§āϝāσ Note āĻ•āϰāϤ⧇ āĻšāĻŦ⧇ + āϝ⧇āϕ⧋āύ⧋ āĻāĻ•āϟāĻŋ āĻŦāχ āĻĢāϞ⧋ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤

āĻ…āĻĨāĻŦāĻž, āφāϰ āϝāĻĻāĻŋ āĻŽā§āϝāĻžāĻĨ āĻŽā§‡āĻžāϟāĻžāĻŽā§āϟāĻŋ āĻ•āϰāĻž āĻĨāĻžāϕ⧇, āϤāĻžāĻšāϞ⧇ –
ā§§) 𝐁𝐨𝐛 𝐌đĸđĨđĨ𝐚đĢ 𝐆𝐑𝐄 𝐌𝐚𝐭𝐡
⧍) 𝐌𝐜𝐆đĢ𝐚𝐰 𝟓𝟎𝟎 𝐐𝐮𝐚𝐧𝐭 𝐏đĢ𝐚𝐜𝐭đĸ𝐜𝐞
Âģ Magoosh (Optional)- Magoosh GRE Quant Practice Questions (More than 600 questions) & Magoosh GRE Math Tutorials Videos (About 200 Videos) āĻāϗ⧁āϞ⧋āϰ āϏāĻžāĻĨ⧇ āĻāĻ–āύāĻ•āĻžāϰ ets test āĻāϰ standard āĻŽāĻŋāϞ āύāĻžāχ, āϤāĻžāĻ›āĻžā§œāĻž āĻšā§āĻĻāĻžāχ āĻ•āĻ āĻŋāύ āϟāĻžāχāĻĒ⧇āϰ āĻ“ āϏ⧇āϕ⧇āϞ⧇ āĻšā§Ÿā§‡ āϗ⧇āϏ⧇āĨ¤ āϤāĻžāχ āĻĢāϞ⧋ āĻ•āϰāĻž āύāĻž āĻ•āϰāĻž āφāĻĒāύāĻžāϰ āχāĻšā§āĻ›āĻžāĨ¤

2. [Practice āĻāϰ āϜāĻ¨ā§āϝ] āĻāϰāĻĒāϰ āĻāĻ•āϟāĻžāύāĻž āĻĒā§āϰāĻžāĻ•ā§āϟāĻŋāϏ āĻ•āϰāĻžāϰ āϜāĻ¨ā§āϝ –
ā§Š) (ETS) 𝐆𝐑𝐄 𝐌𝐚𝐭𝐡 đ‘đžđ¯đĸ𝐞𝐰 [āϟāĻĒāĻŋāĻ•āĻ“āϝāĻŧāĻžāχāϜ āĻĒā§āϰāĻžāĻ•ā§āϟāĻŋāϏ āĻ•āϰāĻžāϰ āϜāĻ¨ā§āϝ] (āĻāϟāĻžāχ āĻŽā§‚āϞāϤ āϏāĻŋāϞ⧇āĻŦāĻžāϏ, āϝāĻž āĻ…āύ⧇āϕ⧇āχ āϜāĻžāύ⧇āύāĻž)
ā§Ē) (ETS) 𝐆𝐑𝐄 𝐐𝐮𝐚𝐧𝐭đĸ𝐭𝐚𝐭đĸđ¯đž 𝐑𝐞𝐚đŦ𝐨𝐧đĸ𝐧𝐠
ā§Ģ) (ETS) 𝐆𝐑𝐄 𝐎𝐟𝐟đĸ𝐜đĸ𝐚đĨ 𝐆𝐮đĸ𝐝𝐞
ā§Ŧ) 𝐃đĸ𝐟𝐟đĸ𝐜𝐮đĨ𝐭𝐲-𝐰đĸđŦ𝐞 𝟓𝟎𝟎 đĒ𝐮𝐞đŦ𝐭đĸ𝐨𝐧đŦ
ā§­) 𝐓𝐨𝐩đĸ𝐜-𝐰đĸđŦ𝐞 𝟔𝟎𝟎 đĒ𝐮𝐞đŦ𝐭đĸ𝐨𝐧đŦ
ā§Ž) KMF 1147math

āĻĢāĻžāχāύāĻžāϞāĻŋ, Mock Test

āϚāĻžāχāϞ⧇-

  • ETS GRE BIG BOOK āĻāϰ 16-20 Quant Section āϟāĻž āĻĢāϞ⧋ āĻ•āϰāϤ⧇ āĻĒāĻžāϰ⧇āύ (Data Interpretation āĻāϰ āϜāĻ¨ā§āϝ āĻāϟāĻž āĻ­āĻžāϞāχ)
  • Nova GRE Math Bible (Geometry and Counting āĻāϰ āϜāĻ¨ā§āϝ āĻŽā§‹āϟāĻžāĻŽā§āϟāĻŋ āĻ­āĻžāϞ)
  • GMAT Quant Review āĻāϰ 180-200 āĻāϰ āĻŽāϤ āĻĒā§āϰāĻļā§āύ āϝ⧇āϗ⧁āϞ⧋ āĻĻā§‡ā§ŸāĻž āφāϛ⧇ āϐāϗ⧁āϞāĻž āĻĒā§āĻ°ā§āϝāĻžāĻ•āϟāĻŋāϏ āĻ•āϰāϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤ āφāϰ, GMAT Official Guide āĻĨ⧇āϕ⧇ algebra āĻāϰ words problems(distance,velocity,mixture,profit,age,etc) āϗ⧁āϞāĻž āĻĒā§āϰāĻžāĻ•āϟāĻŋāϏ āĻ•āϰāĻž āĻ­āĻžāϞāχ
  • Attempt ETS GRE Power Prep
  • ETS Power Prep Plus Question 240Qs+

Tips, Tricks & Teqniques (All)

answer āĻ•āϰāĻžāϰ āĻŸā§‡āĻ•āύāĻŋāĻ•āϗ⧁āϞ⧋/āĻ•ā§ŒāĻļāϞāσ

  1. * Quant āĻāϰ ā§§āĻŽ āϏ⧇āĻ•āĻļāύ⧇ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰāĻŦ⧇āύ āϝāϤāϟāĻž āϏāĻŽā§āĻ­āĻŦ āĻŦ⧇āĻļāĻŋ āωāĻ¤ā§āϤāϰ āĻ•āϰāϤ⧇āĨ¤ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰāĻŦ⧇āύ āĻ•āĻŽāĻĒāĻ•ā§āώ⧇ āϝ⧇āύ ā§§ā§­/ā§§ā§Ž āϟāĻž āĻ•āĻžāϰ⧇āĻ•ā§āϟ āĻšāϝāĻŧāĨ¤
  2. * āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋ āĻ­āĻžāϞ⧋āĻ­āĻžāĻŦ⧇ āĻŦ⧁āĻā§‡ āύāĻŋāύ āĻāĻŦāĻ‚ āϕ⧀ āϕ⧀ āĻŸā§‡āĻ•āύāĻŋāĻ• āĻŦāĻž āϏ⧁āĻ¤ā§āϰ āĻĒā§āϰāϝāĻŧā§‹āĻ— āĻ•āϰāĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇ āϤāĻž āĻ­āĻžāĻŦ⧁āύāĨ¤ āϤāĻžāϰāĻĒāϰ āĻļ⧁āϰ⧁ āĻ•āϰ⧁āύāĨ¤
  3. * āĻŽā§‡āĻ¨ā§āϟāĻžāϞ āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āĻļāύ⧇āϰ āĻĒā§āϰāϤāĻŋ āĻœā§‹āϰ āĻĻāĻŋāύ āĻāĻŦāĻ‚ āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ“ āϰāĻžāĻĢ āĻĒ⧇āĻĒāĻžāϰ āϝāϤāϟāĻž āϏāĻŽā§āĻ­āĻŦ āĻ•āĻŽ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧁āύāĨ¤
  4. * āϕ⧋āύ⧋ āĻĒā§āϰāĻļā§āύ⧇ āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āĻŦ⧇āĻļā§€ āϏāĻŽāϝāĻŧ (⧍ āĻŽāĻŋāύāĻŋāĻŸā§‡āϰ āĻŦ⧇āĻļā§€) āĻŦā§āϝāϝāĻŧ āĻ•āϰāĻŦ⧇āύ āύāĻžāĨ¤ āĻĒā§āϰāϝāĻŧā§‹āϜāύ āĻšāϝāĻŧ ⧍/ā§Š āĻŦāĻžāϰ āϰāĻŋāĻĒāĻŋāϟ āĻ•āϰāĻŦ⧇āύāĨ¤
  5. * Quant āĻ āϏāĻ•āϞ āχāύāĻĢāϰāĻŽā§‡āĻļāύāχ āĻĻ⧇āϝāĻŧāĻž āĻĨāĻžāϕ⧇, āϤāĻžāχ āĻŽāύ⧋āϝ⧋āĻ—, āĻĻāĻŋāϝāĻŧ⧇ āĻĒā§āϰāĻļā§āύ āĻŦāĻž āϚāĻŋāĻ¤ā§āϰ āĻĒāĻĄāĻŧ⧁āύ, āĻĒā§āϰāϝāĻŧā§‹āϜāύ⧀āϝāĻŧ āϤāĻĨā§āϝ āϖ⧁āρāϜ⧁āύāĨ¤
  6. * Quant comparison āĻ exact āĻŽāĻžāύ āĻŦ⧇āϰ āĻ•āϰāĻž āϞāĻžāϗ⧇ āύāĻž, āĻļ⧁āϧ⧁ āĻŦāĻĄāĻŧ/āϛ⧋āϟ āĻŦ⧇āϰ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāϞ⧇āχ āĻšā§Ÿ, āϤāĻžāχ āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āĻļāύ⧇āϰ āϕ⧋āύ⧋ āĻĻāϰāĻ•āĻžāϰ āύ⧇āχāĨ¤
  7. * āφāĻŽāĻžāϰ āĻāĻ•āϟāĻŋ āĻĒāĻ›āĻ¨ā§āĻĻ⧇āϰ āĻŸā§‡āĻ•āύāĻŋāĻ• āφāϛ⧇ “āĻŽāύ⧇ āĻ•āϰāĻŋ”āĨ¤ āĻāϏāĻŦ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āύāĻŋāĻ°ā§āĻĻāĻŋāĻˇā§āϟ āĻŽāĻžāύ āĻĻ⧇āϝāĻŧāĻž āĻĨāĻžāϕ⧇āύāĻž, āϏ⧇āϏāĻŦ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻāχ āĻŸā§‡āĻ•āύāĻŋāĻ•āϟāĻŋ āϏāĻ°ā§āĻŦāĻžāĻĒ⧇āĻ•ā§āώāĻž āωāĻĒāĻ•āĻžāϰ⧀āĨ¤ āϤāĻŦ⧇ āĻŽāĻžāύ āϧāϰāĻžāϰ āϏāĻŽāϝāĻŧ āĻĒāĻœā§‡āϟāĻŋāĻ­, āύ⧇āϗ⧇āϟāĻŋāĻ­, ā§Ļ, ā§§ āĻāĻŦāĻ‚ āĻĻāĻļāĻŽāĻŋāϕ⧇āϰ āĻ•āĻĨāĻž āϭ⧁āϞāĻŦ⧇āύ āύāĻžāĨ¤
  8. * āĻ…āϧāĻŋāĻ•āĻžāĻ‚āĻļ āϏāĻŽāĻ¸ā§āϝāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ “process of elimination” āĻ…āύ⧇āĻ• āωāĻĒāĻ•āĻžāϰ⧀āĨ¤ āĻĒā§āϰāĻļā§āύ⧇ āĻĻ⧇āϝāĻŧāĻž āĻļāĻ°ā§āϤ āĻ…āύ⧁āϏāĻžāϰ⧇ āϝ⧇āϏāĻŦ āĻ…āĻĒāĻļāύ āϗ⧁āϞ⧋ āĻšāϤ⧇ āĻĒāĻžāϰ⧇ āϏ⧇āϗ⧁āϞ⧋ āϰ⧇āϖ⧇ āĻŦāĻžāĻ•āĻŋ āĻ…āĻĒāĻļāύāϗ⧁āϞ⧋ āϏāĻŦ āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧ⧇ āĻĻāĻŋāύ/āϕ⧇āĻŸā§‡ āĻĻāĻŋāύāĨ¤
  9. * ets āĻāϰ quant āĻāϰ āύāĻŋāϝāĻŧāĻŽāϗ⧁āϞ⧋ āĻ­āĻžāϞ⧋āĻ­āĻžāĻŦ⧇ āĻœā§‡āύ⧇ āĻ“ āĻŦ⧁āĻā§‡ āύāĻŋāĻŦ⧇āύ āĻāĻŦāĻ‚ āĻĒāϰ⧀āĻ•ā§āώāĻžāϰ āϏāĻŽāϝāĻŧ āϏ⧇āϗ⧁āϞ⧋ āϭ⧁āϞ⧇ āϝāĻžāĻŦ⧇āύ āύāĻžāĨ¤ āϝ⧇āĻŽāύ, āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋāϤ⧇ āϚāĻŋāĻ¤ā§āϰāϗ⧁āϞ⧋ āĻ¸ā§āϕ⧇āϞ āĻ…āύ⧁āϏāĻžāϰ⧇ āĻĨāĻžāϕ⧇āύāĻž, āϤāĻŦ⧇ āĻ¸ā§āĻĨāĻžāύāĻžāĻ™ā§āĻ• āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋāϤ⧇ āĻ¸ā§āϕ⧇āϞ āĻ…āύ⧁āϏāĻžāϰ⧇ āĻĨāĻžāϕ⧇, āφāĻŦāĻžāϰ āϰ⧁āϟ āĻĨāĻžāĻ•āϞ⧇ āĻļ⧁āϧ⧁ āĻĒāϜāĻŋāϟāĻŋāĻ­ āĻŽāĻžāύāϟāĻžāχ āĻšāĻŦ⧇, āύ⧇āϗ⧇āϟāĻŋāĻ­āϟāĻž āύāϝāĻŧ āχāĻ¤ā§āϝāĻžāĻĻāĻŋāĨ¤
  10. * āϝ⧇āĻšā§‡āϤ⧁ āύ⧇āϗ⧇āϟāĻŋāĻ­ āĻŽāĻžāĻ°ā§āĻ•āĻŋāĻ‚ āύ⧇āχ āϤāĻžāχ āϕ⧋āύ⧋ āĻĒā§āϰāĻļā§āύāχ āĻ–āĻžāϞāĻŋ āϰ⧇āϖ⧇ āφāϏāĻŦ⧇āύ āύāĻžāĨ¤ āφāϰ āϝ⧇āĻšā§‡āϤ⧁ āϕ⧋āύ⧋ āĻĒā§āϰāĻļā§āύāχ āĻ–āĻžāϞāĻŋ āϰ⧇āϖ⧇ āφāϏāĻŦ⧇āύ āύāĻž āϤāĻžāχ āϏāĻŽāϝāĻŧ⧇āϰ āĻĻāĻŋāϕ⧇ āĻŦāĻžāϰ āĻŦāĻžāϰ āϖ⧇āϝāĻŧāĻžāϞ āϰāĻžāϖ⧁āύ āĻāĻŦāĻ‚ āĻŦāĻžāϏāĻžāϝāĻŧ āĻŽāĻĄā§‡āϞ āĻŸā§‡āĻ¸ā§āϟ āĻĻ⧇āϝāĻŧāĻžāϰ āĻāĻŦāĻ‚ āĻļāϞāĻ­ āĻ•āϰāĻžāϰ āϏāĻŽāϝāĻŧ āĻĻ⧇āĻ–āĻŦ⧇āύ āϏāĻŽāϝāĻŧ⧇āϰ āĻŽāĻ§ā§āϝ⧇āχ āϏāĻŦ āĻļ⧇āώ āĻšāϝāĻŧ⧇āϛ⧇ āĻ•āĻŋāύāĻžāĨ¤

āĻĒāϰāĻžāĻŽāĻ°ā§āĻļāσ

  • āĻĒāϰ⧀āĻ•ā§āώāĻžāϝāĻŧ āĻĻ⧇āĻ–āĻž āϝāĻžāϝāĻŧ āϝ⧇, āĻŽāĻžāĻ˛ā§āϟāĻŋāĻĒāϞ āϚāϝāĻŧ⧇āϏ⧇āϰ āωāĻ¤ā§āϤāϰ āϗ⧁āϞāĻžāϰ āĻŽāĻ§ā§āϝ⧇ āĻĻ⧁āχ āϤāĻŋāύāϟāĻžāχ āĻĻ⧇āĻ–āϤ⧇ āϏāĻ āĻŋāĻ•/āĻāĻ•āχ āĻŽāύ⧇ āĻšāϝāĻŧ, āĻĒāĻžāρāϚāϟāĻŋ answer āĻ…āĻĒāĻļāύ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āϤāĻŋāύāϟāĻžāϰ āĻŽāĻ§ā§āϝ⧇āχ āĻ“āϰāĻž āĻŸā§āĻ°ā§āϝāĻžāĻĒ āϏ⧇āϟ āĻ•āϰ⧇ āϰ⧇āϖ⧇āϛ⧇, āĻ āĻĨ⧇āϕ⧇ āύāĻŋāĻœā§‡āϕ⧇ āωāĻ¤ā§āϤ⧀āĻ°ā§āĻŖ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻŦ⧇āĻ¸ā§āϟ āĻšāϝāĻŧ, āĻĒā§āĻ°ā§āϝāĻžāĻ•āϟāĻŋāϏ āĻ•āϰ⧇ āύāĻŋāĻœā§‡āϕ⧇ āϝāĻžāϚāĻžāχ āĻ•āϰāĻžāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āφāĻĒāύāĻŋ āύāĻŋāĻœā§‡ āϕ⧋āύāϟāĻžāϝāĻŧ āϕ⧋āύāϟāĻžāϝāĻŧ āϭ⧁āϞ āĻ•āϰāϤ⧇āϛ⧇āύ āĻ“āϗ⧁āϞāĻž āĻŸā§āĻ°ā§āϝāĻžāĻ•(note) āĻ•āϰ⧇ āϰāĻžāĻ–āĻžāĨ¤
  • āϜāĻŋāφāϰāχ’āϰ āĻ—āĻŖāĻŋāϤ⧇āϰ āĻ•āĻŋāĻ‚āĻŦāĻž āĻ•ā§‹ā§ŸāĻžāĻ¨ā§āϟ āϏ⧇āĻ•ā§āĻļāύ⧇āϰ āϜāĻ¨ā§āϝ āφāϗ⧇ āĻŦāχ āĻĨ⧇āϕ⧇ āĻĨāĻŋāĻ“āϰāĻŋ āĻ•āĻŋāĻ‚āĻŦāĻž āĻŦ⧇āϏāĻŋāĻ• Concept/āφāχāĻĄāĻŋ⧟āĻž āύāĻŋā§Ÿā§‡ āύāĻŋāϤ⧇ āĻšāĻŦ⧇. āϤāĻžāϰāĻĒāϰ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇ āϏāĻŽāĻ¸ā§āϝāĻž āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āĻ•āĻžāϜ āϝāĻž āĻĒā§āĻ°ā§āϝāĻžāĻ•āϟāĻŋāϏ āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āϚāĻžāϞāĻŋāϝāĻŧ⧇ āϝ⧇āϤ⧇ āĻšāĻŦ⧇.
  • āϤāĻžāϰāĻĒāϰ āφāϏ⧇ āĻ•āĻŋ āĻ•āϰ⧇ āĻĻā§āϰ⧁āϤ āĻāĻŦāĻ‚ āĻ…āĻ˛ā§āĻĒ āϏāĻŽā§Ÿā§‡āϰ āĻŽāĻ§ā§āϝ⧇ āĻ—āĻŖāĻŋāϤ⧇āϰ āϏāĻŽāĻ¸ā§āϝāĻžāϗ⧁āϞ⧋ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤ āϜāĻŋāφāϰāχ’āϰ āϜāĻ¨ā§āϝ āĻāĻ•āϟāĻŋ āĻļāĻ°ā§āϟāĻ•āĻžāϟ āĻŽā§āϝāĻžāĻĨ āĻŦāχ āϝ⧇āĻŽāύ- Rapid Quantitative Aptitude – With Shortcuts & Tricks for Competitive Exams by Disha Experts. āĻļāĻ°ā§āϟāĻ•āĻžāϟ āĻĻāϰāĻ•āĻžāϰ āφāϛ⧇ āϏāĻ¤ā§āϝ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϤāĻžāϰ āĻĨ⧇āϕ⧇ āĻŦ⧇āĻļāĻŋ āϏāĻ¤ā§āϝ āφāĻŽāĻžāĻĻ⧇āϰ āύāĻŋāĻœā§‡āĻĻ⧇āϰ āĻ—āĻŖāĻŋāϤ⧇āϰ āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āĻļāύ āĻ¸ā§āĻĒāĻŋāĻĄ āĻŦāĻžā§œāĻžāύ⧋.

Topic: Basic Math Terms & Symbols – āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āĻŽā§āϝāĻžāĻĨ āϟāĻžāĻ°ā§āĻŽ āĻ“ āϚāĻŋāĻšā§āύ

  • digit = = āĻ…āĻ™ā§āĻ• / āϏāĻ‚āĻ–ā§āϝāĻž(āĻĒā§āϰāϤ⧀āĻ•)[āφāϞāĻžāĻĻāĻžāĻ­āĻžāĻŦ⧇]
  • number = āϏāĻ‚āĻ–ā§āϝāĻž[āĻāĻ•āĻ¤ā§āϰ]
  • prime number = āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž
  • Integer = āĻĒā§‚āĻ°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻž
  • mix number = āĻŽāĻŋāĻļā§āϰ āϏāĻ‚āĻ–ā§āϝāĻž
  • Decimal = āĻĻāĻļāĻŽāĻŋāĻ• (āϏāĻ‚āĻ–ā§āϝāĻž)
  • Consecutive number = āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž
  • Ratio – āĻ…āύ⧁āĻĒāĻžāϤ
  • Velocity – āĻŦ⧇āĻ—
  • Factor – āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ•
  • fraction = āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ(āĻĒā§āϰāĻ•ā§ƒāϤ)
  • Improper fraction = āĻ…āĻĒā§āϰāĻ•ā§ƒāϤ āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ
  • numerator = āϞāĻŦ
  • denominator = āĻšāϰ
  • Even = āĻœā§‹ā§œ
  • Odd = āĻŦāĻŋāĻœā§‹ā§œ
  • adding = āϝ⧋āĻ— [āϝ⧋āĻ—āĻĢāϞ(sum)]
  • substracting/ deducting = āĻŦāĻŋā§Ÿā§‹āĻ— [āĻŦāĻŋā§Ÿā§‹āĻ—āĻĢāϞ(Difference)]
  • multipling/multiply = āϗ⧁āĻŖ [āϗ⧁āĻŖāĻĢāϞ(product)]
  • devisor (āĻ­āĻžāϜāĻ•)
  • dividend (āĻ­āĻžāĻœā§āϝ)
  • deviding = āĻ­āĻžāĻ— [āĻ­āĻžāĻ—āĻĢāϞ(Quotient)]
  • remainder = āĻ­āĻžāĻ—āĻļ⧇āώ
  • sum(of),
  • add, plus, combined, total, all,
  • and
  • more than, increase, etc

āĻŦāĻŋā§Ÿā§‹āĻ—āĻĢāϞ(Difference)# āĻ…āĻ‚āϕ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āϝ⧇āϏāĻŦ Word āϗ⧁āϞ⧋ āĻĨāĻžāĻ•āϞ⧇ āφāĻŽāϰāĻž āĻŦāĻŋā§Ÿā§‹āĻ— āĻ•āϰāĻŦā§‹:-

  • substracting,
  • deducting
  • multiplied by
  • of, product of
  • twice, thrice
  • double, triple
  • half, one third, two thirds
  • times, times as much, etc

āĻ­āĻžāĻ—āĻĢāϞ(Quotient)# āĻ…āĻ‚āϕ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āϝ⧇āϏāĻŦ Words āϗ⧁āϞ⧋ āĻĨāĻžāĻ•āϞ⧇ āφāĻŽāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāĻŦā§‹?:-

  • deviding
  • equals, is, is the same as
  • has, was, will, be
  • costs
  • adds up to
  • results, etc

āϚāĻŋāĻšā§āύ – Symbol & Meaning list:-

  • ‘”='” (equals sign [āϏāĻŽāĻžāύ])
  • “≠”  (is not equal to sign[āĻ…āϏāĻŽāĻžāύ])
  • “~” (is similar to (āĻ…āύ⧁āϰ⧂āĻĒ) // used for mathematical relations)
  • “≈” ( “is congruent to(āϏāĻ°ā§āĻŦāϏāĻŽ) / approximately equal / ALMOST EQUAL TO”, is for numerical data, homeomorphism) like 𝜋≈3.14
  • “≃” (ASYMPTOTICALLY EQUAL TO/ is for homotopy equivalence)
  • “⊰”  (APPROXIMATELY EQUAL TO)
  • “≅” (is for isomorphism, congruence, etc,  // often used in modular arithmetic to state a congruence relation)
  • “≐” (used for “is defined as”)
  • “≡” (used for equivalence)
  • Âą (Plus or minus[āϝ⧋āĻ— āĻŦāĻž āĻŦāĻŋā§Ÿā§‹āĻ—])
  • “||” (parallel to[āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞ])
  • âŠĨ (is perpendicular[āϞāĻŽā§āĻŦ])
  • |x| (Absolute value of x)

#

  • L.H.S. left hand side of an equation or inequality (āĻŦāĻžāĻŽāĻĒāĻ•ā§āώ)
  • R.H.S. right hand side of an equation or inequality (āĻĄāĻžāύāĻĒāĻ•ā§āώ)
  • “<” {L.H.S. is less than R.H.S (āϛ⧋āϟ)}
  • “>” {L.H.S. is greater than R.H.S (āĻŦ⧜)}
  • ≤ (L.H.S. is less than or equal R.H.S[āϛ⧋āϟ āĻŦāĻž āϏāĻŽāĻžāύ])
  • â‰Ĩ (L.H.S. is greater than or equal R.H.S āĻŦ⧜ āĻŦāĻž āϏāĻŽāĻžāύ])

Exponent: Exponent 2Âŗ means 2x2x2 = 8

āφāĻŽāϰāĻž āϜāĻžāύāĻŋ āĻļ⧁āϧ⧁āĻŽāĻžāĻ¤ā§āϰ āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āϝ⧇āϕ⧋āύ⧋ (āĻœā§‹ā§œ/āĻŦāĻŋāĻœā§‹ā§œ)āϏāĻ‚āĻ–ā§āϝāĻžāϰ,  āĻŦāĻŋāĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻ• Exponent āĻ•āϰāĻ˛ā§‡Â  = āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āĻšā§ŸāĨ¤ āĻŦāĻžāĻ•āĻŋāϏāĻŦ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āϧāύāĻžāĻ¤ā§āĻŽāĻ• āĻšāϝāĻŧāĨ¤

(2)² = 4 (2×2)

(-2)² = 4 (-2 x -2)

(2)Âŗ = 8 (2x2x2)

(-2)Âŗ = -8 (-2 x -2 x -2)

(-3)² = 9 (-3 x -3)

(-3)Âŗ = -27 (-3 x -3 x -3)

Root:  2 = √4 āĻŦāĻž, 2² = 4 (āĻāϟāĻž āĻ…āύ⧇āĻ•āϟāĻž exponent āĻāϰ āωāĻ˛ā§āĻŸā§‹)

Factorial: āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻĢā§āϝāĻžāĻ•ā§āĻŸā§‹āϰāĻŋāϝāĻŧāĻžāϞ āĻŦāϞāϤ⧇ āĻŦ⧁āĻāĻžāϝāĻŧ ā§§ āĻĨ⧇āϕ⧇ āĻļ⧁āϰ⧁ āĻ•āϰ⧇ āϐ āϏāĻ‚āĻ–ā§āϝāĻž āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻŋ āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ•ā§āϰāĻŽāĻŋāĻ• āϗ⧁āĻŖāĻĢāϞāĨ¤
āϝ⧇āĻŽāύāσ 5! = 1 x 2 x 3 x 4 x 5 = 120
āĻĢā§āϝāĻžāĻ•ā§āĻŸā§‹āϰāĻŋāϝāĻŧāĻžāϞ āĻĒā§āϰāϝ⧋āĻœā§āϝ āϕ⧇āĻŦāϞ āĻŽāĻžāĻ¤ā§āϰ āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ {N} āϜāĻ¨ā§āϝāĨ¤ āĻāϕ⧇ āφāĻļā§āϚāĻ°ā§āϝāĻŦā§‹āϧāĻ• āϚāĻŋāĻšā§āύ (!) āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšāϝāĻŧāĨ¤

Imaginary nummber: i2 = −1 āĻŦāĻž √-1 = i. āϝ⧇āĻŽāύ- 3i, 7i, -2i, √i

  • i = √-1
  • i2 = -1
  • i3 = -i
  • i4 = +1
  • i4n = 1
  • i4n-1= -i etc

Topic: Basic operations (Even, Odd, Multiply, Division)

Order of Operations: (PEMDAS āĻŦāĻž BODMAS)

  • Parenthesis (brackets)
  • Exponents
  • Multiplication
  • Division
  • Addition
  • Subtraction
āĻ…āĻ—ā§āϰāĻžāϧāĻŋāĻ•āĻžāϰ⧇āϰ āĻ•ā§āϰāĻŽāϟāĻž āĻāχ āϰāĻ•āĻŽ:
1) Parenthesis/āĻŦāĻ¨ā§āϧāύ⧀ āĻŦāĻž Bracket(B)
2) Exponents/āϏ⧂āϚāĻ• āĻŦāĻž Order(O)
ā§Š) āϗ⧁āĻŖ-āĻ­āĻžāĻ—, Division/Multiplication (D/M)
ā§Ē) āϝ⧋āĻ—-āĻŦāĻŋā§Ÿā§‹āĻ—, (Addition/Subtraction)

ā§Š āĻ“ ā§Ē āύāĻ‚ āĻ PEMDAS rule āĻ āĻĻ⧁āĻŸā§‹ āĻĻ⧁āĻŸā§‹ āĻ•āϰ⧇ āĻāĻ•āϏāĻžāĻĨ⧇ āϞāĻŋāĻ–āĻžāϰ āĻ•āĻžāϰāĻŖ-

  • āφāϗ⧇ ‘āĻ­āĻžāĻ—’, āĻĒāϰ⧇ ‘āϗ⧁āĻŖ’ āĻāĻŽāύ āϕ⧋āύ⧋ āύāĻŋ⧟āĻŽ āφāϏāϞ⧇ āύāĻžāχāĨ¤ āϝ⧋āĻ— āφāϗ⧇, āĻŦāĻŋā§Ÿā§‹āĻ— āĻĒāϰ⧇ āĻāĻŽāύ āϕ⧋āύ⧋ āĻ•āĻĨāĻž āύāĻžāχāĨ¤
  • ā§§. āϝ⧇ āĻ…āĻĒāĻžāϰ⧇āĻļāύ⧇āϰ āĻ…āĻ—ā§āϰāĻžāϧāĻŋāĻ•āĻžāϰ āĻŦ⧇āĻļāĻŋ, āϤāĻžāϕ⧇ āφāϗ⧇ āĻšāĻŋāϏ⧇āĻŦ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤
  • ⧍. āϝāĻĻāĻŋ āĻāĻ•āχ āĻ…āĻ—ā§āϰāĻžāϧāĻŋāĻ•āĻžāϰ⧇āϰ āĻ…āύ⧇āĻ•āϗ⧁āϞ⧋ āĻ…āĻĒāĻžāϰ⧇āĻļāύ āĻĨāĻžāϕ⧇ āϤāĻžāĻšāϞ⧇ ‘āĻŦāĻžāĻŽ āĻĨ⧇āϕ⧇ āĻĄāĻžāĻ¨ā§‡â€™ āĻšāĻŋāϏ⧇āĻŦ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇
(BODMAS āĻāϰ āϭ⧇āϤāϰ⧇ āφāϗ⧇ D āφāϛ⧇, āϤāĻžāχ Division āĻŦāĻž āĻ­āĻžāϗ⧇āϰ āĻ•āĻžāϜ āφāϗ⧇ āĻšāĻŦ⧇, āĻāϟāĻžāχ āϏāĻŦāĻžāχāϕ⧇ āĻļ⧇āĻ–āĻžāύ⧋ āĻšā§Ÿ, āϝ⧇āϟāĻž āĻ…āĻĒā§āĻ°ā§Ÿā§‹āϜāĻ¨ā§€ā§Ÿ/āϭ⧁āϞāĨ¤)
# 2×8Ãˇ2Ãˇ2 āϕ⧀āĻ­āĻžāĻŦ⧇ āĻ•āϰāĻŦ?
2×8Ãˇ2Ãˇ2
= 16Ãˇ2Ãˇ2
= 8Ãˇ2
= 4
# 12Ãˇ2Ãˇ3×4-6+5×7 āϕ⧀āĻ­āĻžāĻŦ⧇ āĻ•āϰāĻŦ?
āĻāĻ–āĻžāύ⧇ āϗ⧁āĻŖāĻ­āĻžāĻ—-āĻ“ā§ŸāĻžāϞāĻž āĻ…āĻ‚āĻļāϗ⧁āϞ⧋āϕ⧇ āϝ⧇āĻŽāύ (12Ãˇ2Ãˇ3×4) āĻāĻŦāĻ‚ (5×7) āϕ⧇ āφāϗ⧇ āφāϞāĻžāĻĻāĻž āĻ•āϰ⧇ āύāĻŋāύāĨ¤ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ⧇ āĻŦā§āĻ°ā§āϝāĻžāϕ⧇āϟ āĻĻāĻŋā§Ÿā§‡ āύāĻŋāϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤ āϏ⧇āϗ⧁āϞ⧋āϰ āĻ­āĻŋāϤāϰ⧇ āϝāĻĻāĻŋ āϗ⧁āĻŖāĻ­āĻžāĻ— āĻĻ⧁āχ-āχ āĻĨāĻžāϕ⧇ āϤāĻžāĻšāϞ⧇ āĻŦāĻžāĻŽ āĻĨ⧇āϕ⧇ āĻĄāĻžāύ⧇ āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤
12Ãˇ2Ãˇ3×4-6+5×7
= (12Ãˇ2Ãˇ3×4)-6+(5×7)
= (6Ãˇ3×4)-6+35
= (2×4)-6+35
= 8-6+35
āĻ–ā§‡ā§ŸāĻžāϞ āĻ•āϰ⧁āύ āϗ⧁āĻŖ-āĻ­āĻžāϗ⧇āϰ āĻ•āĻžāϜ āĻļ⧇āώ āĻšāϞ⧇, āĻĒā§œā§‡ āĻĨāĻžāĻ•āĻŦ⧇ āϝ⧋āĻ—-āĻŦāĻŋā§Ÿā§‹āĻ—āĨ¤ āϝāĻžāĻĻ⧇āϰ āĻ…āĻ—ā§āϰāĻžāϧāĻŋāĻ•āĻžāϰ āĻāĻ•āχāĨ¤ āϏ⧁āϤāϰāĻžāĻ‚ āĻŦāĻžāĻŽ āĻĨ⧇āϕ⧇ āĻĄāĻžāύ⧇ āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤
8-6+35
= 2+35
= 37
# 6Ãˇ2(1+2) = ?
6Ãˇ2(1+2)
= 6Ãˇ2×(1+2)
= 6Ãˇ2×3 [āφāϗ⧇ āĻŦā§āĻ°ā§āϝāĻžāϕ⧇āĻŸā§‡āϰ āĻ•āĻžāϜ]
= 3 × 3 [āϗ⧁āĻŖ-āĻ­āĻžāĻ— āĻāĻ•āχ āĻ…āĻ—ā§āϰāĻžāϧāĻŋāĻ•āĻžāϰ, āϤāĻžāχ āĻŦāĻžāĻŽ āĻĨ⧇āϕ⧇ āĻĄāĻžāύ⧇]
= 9

 

#
13-5+3-2+2
= 13+3+2-5-2
= 18-7
= 11

Even numbers(āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž): end with 0, 2, 4, 6, 8 (those numbers that are completely divisible by 2)

0 is even because 0 = (2 × 0) + 0

* General formula for Even Number: 2n (n is integer)

Odd Numbers(āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž): end with 1, 3, 5, 7, 9

1 is odd because 1 = (2 × 0) + 1

* General formula for Odd Number: 2n-1 (n is integer)

# Even āĻāĻŦāĻ‚ Odd āϏāĻ‚āĻ–ā§āϝāĻžāϰ, āϝ⧋āϗ⧇āϰ āύāĻŋ⧟āĻŽ:- (Even = āĻœā§‹ā§œ, Odd = āĻŦāĻŋāĻœā§‹ā§œ)

  • Even + Even = Even (4+6 =20) (āĻœā§‹ā§œ+āĻœā§‹ā§œ=āĻœā§‹ā§œ)
  • Odd + Odd = Even (3+3=6)      (āĻŦāĻŋāĻœā§‹ā§œ+āĻŦāĻŋāĻœā§‹ā§œ=āĻœā§‹ā§œ)
  • Even + Odd = Odd (2+3=5)      (āĻœā§‹ā§œ+āĻŦāĻŋāĻœā§‹ā§œ=āĻŦāĻŋāĻœā§‹ā§œ),
  • Odd + Even = Odd (3+2=5)

āφāĻŦāĻžāϰ,

  • āĻœā§‹ā§œ+āĻŦāĻŋāĻœā§‹ā§œ+āĻŦāĻŋāĻœā§‹ā§œ= āĻœā§‹ā§œ,
  • āĻŦāĻŋāĻœā§‹ā§œ+āĻœā§‹ā§œ+āĻœā§‹ā§œ=āĻŦāĻŋāĻœā§‹ā§œ,
  • āĻŦāĻŋāĻœā§‹ā§œ+āĻŦāĻŋāĻœā§‹ā§œ+āĻŦāĻŋāĻœā§‹ā§œ=āĻŦāĻŋāĻœā§‹ā§œ,
  • āĻœā§‹ā§œ+āĻœā§‹ā§œ+āĻœā§‹ā§œ=āĻœā§‹ā§œ

# Even āĻāĻŦāĻ‚ Odd āϏāĻ‚āĻ–ā§āϝāĻžāϰ, āϗ⧁āύ⧇āϰ āύāĻŋ⧟āĻŽ:- (Even = āĻœā§‹ā§œ, Odd = āĻŦāĻŋāĻœā§‹ā§œ)

  • Even X Even = Even (2×2=4)
  • Odd x Odd = Odd (3×5=15)
  • Even X Odd = Even (2×3=6)
  • Odd X Even = Even (3×2=6)
  • The product of an even number of negative factors is positive. āωāĻĻāĻž-ā§§: [(-1)(-1)=1]   āωāĻĻāĻž-⧍: [(-1)( -1)( -1)(-1)=1;
  • The product of an odd number of negative factors is negative. āωāĻĻāĻž-ā§§: ((-1)(-1)( -1)= -1; āωāĻĻāĻž-⧍: (-1)(-1) (-1)(-1) (-1)= -1]

āϗ⧁āύ⧇āϰ āϚāĻŋāĻšā§āύāϗ⧁āϞ⧋-

āĻ­āĻžāϗ⧇āϰ āϚāĻŋāĻšā§āύāϗ⧁āϞ⧋-

# Practice:

1. Arithmatic

Topics: Real Numbers:,|| Basic operations: Odd, Even,Mutiply,Division || Consecutive numbers || Factors, Multiples || Divisibility || Prime Numbers, || HCF and LCM

Topic: Number(āϏāĻ‚āĻ–ā§āϝāĻž):

Digit (āĻ…āĻ™ā§āĻ• / āĻĒāĻžāϟāĻŋāĻ—āĻŖāĻŋāϤ⧇āϰ āĻĒā§āϰāϤ⧀āĻ•): 0,1,2,3,4,5,6,7,8,9 (1,2,3,4,5,6,7,8,9 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻāχ āύ⧟āϟāĻŋāϕ⧇ āĻŦāϞāĻž āĻšā§Ÿ āϏāĻžāĻ°ā§āĻĨāĻ• āĻ…āĻ™ā§āĻ•)

Number (āϏāĻ‚āĻ–ā§āϝāĻž / āĻ…āĻ™ā§āĻ•āĻĒāĻžāϤāύ / āĻĻāĻļ āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϰ⧀āϤāĻŋ): Example- 543, 435 etc

āĻ¸ā§āĻĨāĻ¨ā§€ā§Ÿ āĻŽāĻžāύ āĻ“ āĻ¸ā§āĻŦāĻ•ā§€ā§Ÿ āĻŽāĻžāύ āĻāϰ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝāσ

āĻ¸ā§āĻĨāĻ¨ā§€ā§Ÿ āĻŽāĻžāύāσ 346 āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϤ⧇- 3 āĻāϰ āĻ¸ā§āĻĨāĻžāĻ¨ā§€ā§Ÿ āĻŽāĻžāύ 300, 4 āĻāϰ āĻ¸ā§āĻĨāĻžāĻ¨ā§€ā§Ÿ āĻŽāĻžāύ 40, 6 āĻāϰ āĻ¸ā§āĻĨāĻžāĻ¨ā§€ā§Ÿ āĻŽāĻžāύ 600āĨ¤ āĻāĻ­āĻžāĻŦ⧇ āĻ•āϰ⧇ āϞāĻŋāĻ–āĻž āĻšā§ŸāĨ¤

āĻ¸ā§āĻŦāĻ•ā§€ā§Ÿ āĻŽāĻžāύāσ 346 āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϤ⧇- 3 āĻāϰ āĻ¸ā§āĻĨāĻžāĻ¨ā§€ā§Ÿ āĻŽāĻžāύ 3 āχ āĻĨāĻžāĻ•āĻŦ⧇, 4 āĻāϰ āĻ¸ā§āĻĨāĻžāĻ¨ā§€ā§Ÿ āĻŽāĻžāύ 4 āχ āĻĨāĻžāĻ•āĻŦ⧇,63 āĻāϰ āĻ¸ā§āĻĨāĻžāĻ¨ā§€ā§Ÿ āĻŽāĻžāύ 6 āχ āĻĨāĻžāĻ•āĻŦ⧇āĨ¤

āĻĻ⧇āĻļā§€ā§Ÿ āĻ—āĻŖāύāĻž āĻĒāĻĻā§āϧāϤāĻŋ āĻ“ āφāĻ¨ā§āϤāĻ°ā§āϜāĻžāϤāĻŋāĻ• āĻ—āĻŖāύāĻž āĻĒāĻĻā§āϧāϤāĻŋ āĻāϰ āϏāĻŽā§āĻĒāĻ°ā§āĻ•āσ ā§§ āĻŽāĻŋāϞāĻŋ⧟āύ = ā§§ā§Ļ āϞāĻ•ā§āώāĨ¤ ā§§ āĻŦāĻŋāϞāĻŋ⧟āύ = ā§§ā§Ļā§Ļ āϕ⧋āϟāĻŋāĨ¤

āĻĻ⧇āĻļā§€ā§Ÿ āĻ—āĻŖāύāĻž āĻĒāĻĻā§āϧāϤāĻŋāσ āϕ⧋āϟāĻŋ, āύāĻŋāϝ⧁āϤ, āϞāĻ•ā§āώ, āĻ…āϝ⧁āϤ, āĻšāĻžāϜāĻžāϰ, āĻļāϤāĻ•, āĻĻāĻļāĻ•, āĻāĻ•āĻ•

āφāĻ¨ā§āϤāĻ°ā§āϜāĻžāϤāĻŋāĻ• āĻ—āĻŖāύāĻž āĻĒāĻĻā§āϧāϤāĻŋāσ

Worth to memorize: 1 mil- six zeroes, 1 bil- 9 zeroes, 1 trillion- 12 zeroes.

āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āĻļāύ⧇āϰ āĻļāĻ°ā§āϟāĻ•āĻžāϟ āύāĻŋ⧟āĻŽ āϜāĻžāύāϤ⧇ āĻšāĻŦ⧇-

āϝ⧇āĻŽāύ- 0.1×0.1=0.01

Topic: Real number(āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž):

  • Integers(āχāύāϟāĻŋāϜāĻžāϰ)/Number System: Z = {…, -3, -2, -1, 0, 1, 2, 3, …}
  • Whole numbers(āĻĒā§‚āĻ°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻž): W = {0, 1, 2, 3, ..}
  • Natural/Counting numbers(āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž): N = {1, 2, 3, …}
  • Consecutive number(āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ•/āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž): 1,2,3…āĻŦāĻž 3,5,7,9…..etc
  • Rational numbers(āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž): Q = {-3, 0, -6, 5/6, 3.23} [āϝ⧇ numberāϗ⧁āϞ⧋āϕ⧇ fraction āφāĻ•āĻžāϰ⧇ āϞāĻŋāĻ–āĻž āϝāĻžā§Ÿ]
  • Irrational numbers(āĻ…āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž): Q¯= {√2, -√6, Ī€=3.14….} [āϝ⧇ numberāϗ⧁āϞ⧋āϕ⧇ fraction āφāĻ•āĻžāϰ⧇ āϞāĻŋāĻ–āĻž āϝāĻžā§Ÿ āύāĻž āĻ“ āĻĻ⧁āϟāĻŋ integer a āĻ“ b āĻāϰ ratio āφāĻ•āĻžāϰ⧇ āϞāĻŋāĻ–āĻž āϝāĻžā§Ÿ āύāĻž]

Integer(āχāύāϟāĻŋāϜāĻžāϰ): Z = {â€Ļ.-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,â€Ļ}

Positive, Negetive āĻšāϤ⧇ āĻĒāĻžāϰ⧇, āĻ•āĻŋāĻ¨ā§āϤ⧁ Fraction(āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ), Decimal(āĻĻāĻļāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž) āϏāĻ‚āĻ–ā§āϝāĻž āύ⧟āĨ¤ āϝ⧇āĻŽāύ- 0, -2, 7 etc.

Zero: Integer, even number, Not +, Not – , non prime, non composite number, Zero is a multiple of every integers but is not a factor(the only number that zero can be a factor of is zero)

Non-Negative Integer: { 0, 1, 2, 3,………. }

Non-Positive Integer: {…….,- 3 , – 2 , – 1 , 0 }

Positive Numbers(āϧāύāĻžāĻ¤ā§āĻŽāĻ• āϏāĻ‚āĻ–ā§āϝāĻž): {1,2,3,4,5,…..}

Negative Numbers(āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āϏāĻ‚āĻ–ā§āϝāĻž):  {…..,-4, -3, -2,-1}

positive + positive = positive. [6+3=9]
(negative) + (negative) = negative. [(-6)+(-2)= -8]

Positive × Positive = Positive [3×5 = 15]
Positive × Negative= Negative [(3x (-5) = -15]
Negative × Negative = Positive [-3) × (-5) = 15]

Positive Ãˇ Positive = Positive [6Ãˇ3 = 2]
Positive Ãˇ Negative= Negative [(6Ãˇ (-3) = -2]
Negative Ãˇ Negative = Positive [(- (6) Ãˇ (-3) = 2]

* Positive āĻŦāĻž Negative āύāĻžāĻŽā§āĻŦāĻžāϰ āϕ⧇ āĻŦāĻ°ā§āĻ—(square) āĻ•āϰāϞ⧇ positive āύāĻžāĻŽā§āĻŦāĻžāϰ-āχ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§ŸāĨ¤

* Negative Number āĻāϰ āϕ⧋āύ⧋ root(āĻŦāĻ°ā§āĻ—āĻŽā§āϞ) āύ⧇āχāĨ¤

Whole Number(āĻĒā§‚āĻ°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻž), W = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10â€Ļâ€Ļ}

Counting starts from 0 (It include natural numbers (that begin from 1 onwards), along with 0)

Natural/Counting Numbers (āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž): N = {1, 2, 3, 4, 5, 6, 7, 8, 9,â€Ļ}

Counting starts from 1

āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž(Rational Number): āĻšāĻšā§āϛ⧇ āϏ⧇āχ āϏāĻ•āĻ˛Â āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻžÂ āϝāĻžāĻĻ⧇āĻ°Â  (āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ) āφāĻ•āĻžāϰ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āϝāĻžāϝāĻŧ, āϝ⧇āĻ–āĻžāύ⧇ p āĻāĻŦāĻ‚Â q āωāĻ­āϝāĻŧ āĻĒā§‚āĻ°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻž, p āĻ“Â q āϏāĻšāĻŽā§ŒāϞāĻŋāĻ•Â āϏāĻ‚āĻ–ā§āϝāĻž āĻāĻŦāĻ‚Â q≠0
*** āϏāĻ•āϞ āĻĒā§‚āĻ°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž, āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ(+āĻĒ⧌āύāσāĻĒ⧁āύāĻŋāĻ• āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻ‚āĻ–ā§āϝāĻž)-āχ āĻŽā§āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤Â 

āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž āĻĒā§āϰāĻ•āĻžāĻļ⧇āϰ āĻĒā§āϰāĻ•āĻžāϰāϭ⧇āĻĻ-

  1. āĻĒā§‚āĻ°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻž: āϝ⧇āĻŽāύ- 3 āĻŦāĻž 3/1 āĻŦāĻž √9 , 12, 34 etc
  2. āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ[/Fractions]: (1.āĻĻāĻļāĻŽāĻŋāĻ•[/Decimal], āϝ⧇āĻŽāύ- , , ),
    (2.
    āĻĒ⧌āύāσāĻĒ⧁āύāĻŋāĻ•[recurrent] āĻĻāĻļāĻŽāĻŋāĻ• / āϏāϏ⧀āĻŽ āĻĻāĻļāĻŽāĻŋāĻ•, āϝ⧇āĻŽāύ- 5/3=1.666, ā§§.ā§Ŧā§Šā§Ŧā§Šā§Ŧā§Šā§Ŧā§Šā§Ŧā§Š),
    (3.āĻ…āύ⧁āĻĒāĻžāϤ[/ratio],āϝ⧇āĻŽāύ-  )

āĻ…āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž(Irrational Number): āϝ⧇āϏāĻŦ āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇   (āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ) āφāĻ•āĻžāϰ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āϝāĻžāϝāĻŧ āύāĻž, āϤāĻžāĻĻ⧇āϰ āĻ…āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāϞ⧇āĨ¤ // āϝ⧇āϏāĻŦ āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž āύāϝāĻŧ, āĻ…āĻ°ā§āĻĨāĻžā§Ž āϝāĻžāĻĻ⧇āϰāϕ⧇ āĻĻ⧁āχāϟāĻŋ āĻĒā§‚āĻ°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ…āύ⧁āĻĒāĻžāϤ āĻšāĻŋāϏ⧇āĻŦ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āϝāĻžāϝāĻŧ āύāĻž āϤāĻžāĻĻ⧇āϰāϕ⧇ āĻŦāϞāĻž āĻšāϝāĻŧ āĻ…āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤ āϝ⧇āĻŽāύ- =1.41421356237â€Ļ, ,Â Ī€, e=2.71…., √9/7=3/√7 etc.
*** āĻāϰāĻž āĻ…āϏ⧀āĻŽ āĻ…āύāĻžāĻŦ⧃āϤ / āĻĒā§‚āĻ°ā§āύāĻŦāĻ°ā§āĻ— āύ⧟ āĻāϰ⧂āĻĒ āϝ⧇āϕ⧋āύ⧋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āĻ—āĻŽā§āϞ āĻŦāĻž āĻŦāĻ°ā§āĻ—āĻŽā§āϞ⧇āϰ āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ-āχ āĻ…āĻŽā§‚āϞāĻĻ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤Â 

Topic: Consecutive number(āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ•/āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž):

āϝ⧇āϕ⧋āύ⧋ āύāĻŋāĻ°ā§āĻĻāĻŋāĻˇā§āϟ āĻŦā§āϝāĻŦāϧāĻžāύ āĻĨāĻžāϕ⧇āĨ¤ āĻāχ āĻŦā§āϝāĻŦāϧāĻžāύ āĻœā§‹ā§œ/āĻŦāĻŋāĻœā§‹ā§œ/āϧāύāĻžāĻ¤ā§āĻŽāĻ•/āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āϝ⧇āϕ⧋āύ⧋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ•ā§āϰāĻŽāĻŋāĻ• āĻšāϤ⧇ āĻĒāĻžāϰ⧇āĨ¤ āϝ⧇āĻŽāύ-

even consecutive integer[āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ• āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻž/ āĻ•ā§āϰāĻŽāĻŋāĻ• āĻœā§‹ā§œ]:

  • 2, 4, 6 (āĻŦā§āϝāĻŦāϧāĻžāύāσ ⧍)
  • -6,-8,-10 (āĻŦā§āϝāĻŦāϧāĻžāύāσ ⧍) etc

odd consecutive integer[āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ• āĻŦāĻŋāĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻž / āĻ•ā§āϰāĻŽāĻŋāĻ• āĻœā§‹ā§œ]:

  • 1, 5, 3 (āĻŦā§āϝāĻŦāϧāĻžāύāσ ⧍)
  • 9, 11, 13 (āĻŦā§āϝāĻŦāϧāĻžāύāσ ⧍)
  • 21, 23, 25 (āĻŦā§āϝāĻŦāϧāĻžāύāσ ⧍)
  • 10,13,16 (āĻŦāĻŋāĻœā§‹ā§œ āĻŦā§āϝāĻŦāϧāĻžāύāσ ā§Š) etc

Positive consecutive (āϧāύāĻžāĻ¤ā§āĻŽāĻ• āĻ•ā§āϰāĻŽāĻŋāĻ•): 1, 5, 3 (āĻŦā§āϝāĻŦāϧāĻžāύāσ ⧍)

Negative consecutive (āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āĻ•ā§āϰāĻŽāĻŋāĻ•): -1, -5, -3 (āĻŦā§āϝāĻŦāϧāĻžāύāσ ⧍)

# āĻŽāύ⧇ āϰāĻžāĻ–āĻŦ⧇—

*** When each number is 1 greater than the previous number, then consecutive number formula: n, n+1, n+2, n+3……etc (āĻŦā§āϝāĻŦāϧāĻžāύāσ ā§§)

āĻŦā§āϝāĻŦāϧāĻžāύ ā§§ āφāϛ⧇ āĻāϰāĻ•āĻŽ āϏāĻŋāĻ•ā§‹ā§Ÿā§‡āĻ¨ā§āϏāϗ⧁āϞ⧋ āĻšāĻšā§āϛ⧇:(n āĻāϰ āĻŽāĻžāύ āχāĻšā§āϛ⧇āĻŽāϤ āϝ⧇āĻŽāύ 1 āĻŦāĻž 5 āĻŦāϏāĻŋā§Ÿā§‡ āĻšā§‡āĻ• āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŦ⧇)-

  • (n, n+1, n+2) [āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, n=5 āĻŦāϏāĻžāϞ⧇ āĻšā§Ÿ 5x6x7]    āĻāϰāĻ•āĻŽāĻ­āĻžāĻŦ⧇ (n+3).(n+4).(n+5), āφāĻŦāĻžāϰ⧋ (n+4).(n+5)(n+6);..;…etc
  • (n-1).n.(n+1)     [āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, n=5 āĻŦāϏāĻžāϞ⧇ āĻšā§Ÿ 4x5x6]
  • (n-4).(n-3).(n-2) [āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, n=5 āĻŦāϏāĻžāϞ⧇ āĻšā§Ÿ 1x2x3]

*** When each number is 2 greater than the previous number, then consecutive number formula: n, n+2, n+4……etc (āĻŦā§āϝāĻŦāϧāĻžāύāσ ⧍)

*** āĻŽāύ⧇ āϰāĻžāĻ–āĻŦ⧇, āϤāĻŋāύāϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻĢāϞ āϏāĻ°ā§āĻŦāĻĻāĻžāχ ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤
āĻŦā§āϝāĻžāĻ–ā§āϝāĻžāσ āϤāĻŋāύāϟāĻŋ āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŽāĻ§ā§āϝ⧇ āĻ•āĻŽāĻĒāĻ•ā§āώ⧇ āĻāĻ•āϟāĻŋ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻž āĻĨāĻžāĻ•āĻŦ⧇āχāĨ¤ āĻāϜāĻ¨ā§āϝ āϤāĻŋāύāϟāĻŋ āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻĢāϞ āĻ…āĻŦāĻļā§āϝāχ ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšāĻŦ⧇āĨ¤ āϝ⧇āĻŽāύ: āϤāĻŋāύāϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž ā§Ģ, ā§Ŧ, ā§­ āĻāĻĻ⧇āϰ āϗ⧁āĻŖāĻĢāϞ = ā§Ģ × ā§Ŧ × ā§­ = ⧍⧧ā§Ļ āϝāĻž ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšā§ŸāĨ¤

*** āĻāĻ•āχāĻ­āĻžāĻŦ⧇, any three consecutive integers is divisible by 3! āĻ…āĻ°ā§āĻĨāĻžā§Ž āϤāĻŋāύāϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšāĻŦ⧇āĨ¤

**** āĻāĻ•āχāĻ­āĻžāĻŦ⧇, āϤāĻŋāύāϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻĢāϞ āϏāĻ°ā§āĻŦāĻĻāĻž 6 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤
āĻŦā§āϝāĻžāĻ–ā§āϝāĻžāσ n-āĻāϰ āϜāĻžāϝāĻŧāĻ—āĻžāϝāĻŧ āϝ⧇āϕ⧋āύ⧋ āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāϏāĻžāϞ⧇, āϗ⧁āĻŖāĻĢāϞāϟāĻŋ 6 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšāĻŦ⧇āĨ¤
āϗ⧁āĻŖāĻĢāϞ āĻšāĻŦ⧇ = n(n + 1)(n + 2) = n3 + 3n2 + 2n

**** āĻāĻ•āχāĻ­āĻžāĻŦ⧇, āĻĒāĻžāρāϚāϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻĢāϞ āϏāĻ°ā§āĻŦāĻĻāĻž 20 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤

——

āφāĻŦāĻžāϰ, āϤāĻŋāύāϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻĢāϞ/āϝ⧋āĻ—āĻĢāϞ ⧍, ā§Ŧ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤ [4,12,15 āĻāϗ⧁āϞ⧋ āύ⧟]

Practice:

# Question: If n is an integer greater than 6, which of the following must be divisible by 3?

A. n(n+1)(n−4)

B. n(n+2)(n−1)

C. n(n+3)(n−5)

D. n(n+4)(n−2)

E. n(n+5)(n−6)

Solution1:

āφāĻŽāϰāĻž āϜāĻžāύāĻŋ, any three consecutive integers is divisible by 3! āĻ…āĻ°ā§āĻĨāĻžā§Ž āϤāĻŋāύāϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ(divisible)āĨ¤

ā§Š āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ•ā§āϰāĻŽāĻŋāĻ• āĻĒā§āϝāĻžāϟāĻžāĻ°ā§āύ āϗ⧁āϞ⧋ āĻšāĻšā§āϛ⧇āσ n.(n+1).(n+2), (n+2)(n+3)(n+4),….. etc āĻ…āĻĨāĻŦāĻž (n-1).n.(n+1), (n−7)(n−6)(n−5),….. etc āϝ⧇āϕ⧋āύ⧋ āĻ•āĻŋāϛ⧁āĨ¤
{āϕ⧇āύāύāĻž n āĻāϰ āϝ⧇āϕ⧋āύ⧋ āĻŽāĻžāύ āϝ⧇āĻŽāύ n=5 āĻŦāϏāĻŋā§Ÿā§‡ n.(n+1).(n+2)=5x6x7 āϝāĻž āĻāĻ•āϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž, (n+2)(n+3)(n+4)=7x8x9 āϝāĻž āĻāĻ•āϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž….etcāĨ¤
āĻāĻ•āχāĻ­āĻžāĻŦ⧇, n=5 āĻŦāϏāĻŋā§Ÿā§‡ (n-1).n.(n+1)=4x5x6 āϝāĻž āĻāĻ•āϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž, (n−7)(n−6)(n−5) = -2 x -1 x 0 āϝāĻž āĻāĻ•āϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž……etc}
āφāϰ, āĻ•ā§āϰāĻŽāĻŋāĻ• āĻĒā§āϝāĻžāϟāĻžāĻ°ā§āύ āĻœā§‹ā§œāĻž āϗ⧁āϞ⧋āϰ āĻŽāĻ§ā§āϝ⧇ āĻ…āĻŦāĻ¸ā§āĻĨāĻžāύ⧇āϰ āĻŽāĻžāύ⧇āϰ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāύ āĻ•āϰāϞ⧇āĻ“ ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ(divisible) āĻšā§ŸāĨ¤ āϝ⧇āĻŽāύ- 5x6x7 āĻāϰ 5 āĻāϰ āϜāĻžā§ŸāĻ—āĻžā§Ÿ 7 āĻŦāϏāĻžāϞ⧇āĻ“ 3 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ(divisible) āĻšā§ŸāĨ¤

āĻ•ā§āϰāĻŽāĻŋāĻ• āĻĒā§āϝāĻžāϟāĻžāĻ°ā§āύ āϏāĻšāĻœā§‡ āĻŦ⧁āĻāϤ⧇ āĻāχ āĻ›āĻ• āĻĻ⧇āĻ–āϤ⧇ āĻĒāĻžāϰ- (n−7)(n−6)(n−5)(n−4)(n−3)(n−2)(n−1)n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6) 

āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇,āĻĒā§āϝāĻžāϟāĻžāĻ°ā§āύāϗ⧁āϞāĻžāϤ⧇ (n-1) āĻŦāĻž (n+2) āĻŦāĻž (n−4) āĻāĻ•āχ āϜāĻŋāύāĻŋāϏ āĻŦāϞāĻž āϝāĻžā§Ÿ, āĻ•āĻžāϰāĻŖ āϤāĻžāϰāĻž āĻāϰāĻž āĻĒā§āϰāĻ¤ā§āϝ⧇āϕ⧇āχ āϤāĻžāĻĻ⧇āϰ āĻ•ā§āϰāĻŽāĻŋāĻ• āĻœā§‹ā§œāĻž āϗ⧁āϞ⧋āϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻžāĻ°ā§āϟāĨ¤

āϤ⧋ āĻĒā§āϰāĻļā§āύ āĻĨ⧇āϕ⧇ āĻĻ⧇āĻ–āĻžāχ āϝāĻžāĻšā§āϛ⧇, (n−4).n.(n+1) āĻšāĻšā§āϛ⧇ āĻāĻ•āϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āĻĒā§āϝāĻžāϟāĻžāĻ°ā§āύ, āφāϰ āφāĻŽāϰāĻž āϜāĻžāύāĻŋ-āϤāĻŋāύāϟāĻŋ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ(divisible)āĨ¤ āϤāĻžāχ āĻ…āĻĒāĻļāύ A āχ āĻšāĻŦ⧇ āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āωāĻ¤ā§āϤāϰāĨ¤

If we have 3 consecutive numbers such as n, (n+1), (n+2), we know for sure that at least one of them is divisible by 3.
given numbers such as (n-1)*n*(n+1), we know that the product is divisible by 3.

# Solution2:

3 āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āϝ⧇āϤ⧇ āĻšāĻŦ⧇ āĻāĻŽāύ, n āĻāϰ āĻŽāĻžāύ āϝāĻž 6 āĻĨ⧇āϕ⧇ āĻŦ⧜ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞāĻž Test āĻ•āϰāĻŋāĨ¤ āϤāĻžāχ, 7 āĻ“ 8 āĻŦāϏāĻŋā§Ÿā§‡ value āϗ⧁āϞ⧋ test āĻ•āϰāĻŋ-

A. n (n+1) (n-4) = 7*8*3 and if n = 8 –> 8*9*4
B. n (n+2) (n-1) = 7*9*6 and if n = 8 –> 8*10*7
C. n (n+3) (n-5) = 7*10*5; eliminate as there are no multiples of 3
D. n (n+4) (n-2) = 7*11*5; eliminate as there are no multiples of 3
E. n (n+5) (n-6) = 7*12*1 and and if n = 8 –> 8*13*2

āĻĻ⧇āĻ–āĻž āϝāĻžāĻšā§āϛ⧇, only A āϤ⧇ 3 āĻĻā§āĻŦāĻžāϰāĻž divisible āĻšā§Ÿ, āϤāĻžāχ A āχ āĻšāĻšā§āϛ⧇ answer.

# (all solution link) The product of 3 numbers to be divisible by 3 at least one of them must be divisible by 3. So, to ensure that the product of 3 integers shown is divisible by 3 all 3 numbers must have different remainders upon division by 3, meaning that one of them should have remainder of 1, another reminder of 2 and the last one remainder of 0, so be divisible by 3. We should have something like n(n+1)(n+2) (for example: if n divided by 3 yields remainder of 1, then n+1 yields remainder of 2 and n+2 yields remainder of 0, thus it’s divisible by 3 OR if n divided by 3 yields remainder of 2, then n+2 yields remainder of 1 and n+1 yields remainder of 0, thus it’s divisible by 3).

Only option A satisfies this, because n(n+1)(n−4)=n(n+1)(n−6+2) and n−6n−6 has the same remainder as nn upon division by 3 thus we can replace it by nn.

Answer: A.

#

Shortcut: In every set of 3 consecutive numbers, ONE of them must be divisible by 3 when we are multiplying each of the digits

1*2*3
2*3*4
3*4*5
4*5*6

(A) n(n + 1)(n – 4)

The easiest is if we have something like n(n+1)(n+2)
We know in this case we DEFINITELY have an expression that is divisible by 3.
n=1 => 1*2*3
n=2 => 2*3*4
n=3 => 3*4*5

All are divisible by 3.

Any expression must pass our 3 consecutive integer test.

n(n + 1)(n – 4)
n=1 => 1*2*-3
n=2 => 2*3*1
n=3 => 3*4*-1

Even if n = 4 we have:
4*5*0 = 0 which is divisible by 3.

If n = 16
16*17*12 is divisible by 3.

So (A) passes all the tests and one of numbers in the expression will be divisible by 3 so the whole expression when multiplied together will be divisible by 3.

Question: If a, b, c are three consecutive positive even integers, which of the following must be an integer?

I. (a+b+c)/2
II.(a+b+c)/4
III. (a+b+c)/6

A. I only
B. III only
C. I and II only
D. I and III only
E. I, II and III

Solutions:

Key concept: All EVEN integers can be rewritten as 2n (where n is some integer)
Aside: This also means that all ODD integers can be rewritten as 2n + 1 (where n is some integer)

If, a, b, c are consecutive even integers.
Then, the even positive integers be 2n , 2n+2 & 2n+4 (where, three consecutive numbers be x, x+2, x+4)

(((so,
a=2n
b=2n+2
c=2n+4
a+b+c = 2n+(2n+2)+(2n+4) = 6n+6 )))

I. (a+b+c)/2  =2n+2n+2+2n+4/2 = 6n+6/2 = 3n+3  [if n is an integer, then 3n+3 must also be an integer.]
II. (a+b+c)/4 =2n+2n+2+2n+4/4 = 6n+6/4= 3n+3  [If n=2, then 3n+3/2=3(2)+3/2=9/2 is NOT an integer]
III. (a+b+c)/6=2n+2n+2+2n+4/6 = 6n+6/6 = n+1  [if n is an integer, then n+1 must also be an integer.]

Hence, Answer must be I. & III, (D)

Question:

Solution: even positive integers be 2n , 2n+2 & 2n+4

āĻ•āĻŋāϛ⧁āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āϝ⧇āĻŽāύ- n = 2 āĻŦāϏāĻžāϞ⧇, a+b+c = 4+6+8 = 18

āϤāĻ–āύ, 18 āϕ⧇ 4, 12, 15 āĻĻāĻŋā§Ÿā§‡ āĻ­āĻžāĻ— āϝāĻžāĻŦ⧇ āύāĻžāĨ¤ āϤāĻžāχ āĻ“āχāϗ⧁āϞ⧋ answer āĻšāĻŦ⧇ āύāĻžāĨ¤

āϏāĻžāĻœā§‡āĻļāύāσ āĻĒā§āϰāĻļā§āύ⧇ Must be āĻŦāϞ⧇āϛ⧇ āύāĻžāĻ•āĻŋ could be āĻŦāϞ⧇āϛ⧇ āϐāϟāĻž āĻ–ā§‡ā§ŸāĻžāϞ āϰāĻžāĻ–āĻŦ⧇āĨ¤

#

#

Topic: Divisibility

Division(āĻ­āĻžāĻ—):

# Dividend =  Quotient x Divisor + Reminder

āĻ…āĻ°ā§āĻĨāĻžā§Ž, āĻ­āĻžāĻœā§āϝ(p) = āĻ­āĻžāĻ—āĻĢāϞ(q) x āĻ­āĻžāϜāĻ•(k) + āĻ­āĻžāĻ—āĻļ⧇āώ(r)

*** If the remainder is r when p is divided by k then it can be written, p=kq + r where q is an integer.

# Dividend/Divisor = Quotient + (Reminder/Divisor)

āĻ…āĻ°ā§āĻĨāĻžā§Ž, (āĻ­āĻžāĻœā§āϝ / āĻ­āĻžāϜāĻ•) = āĻ­āĻžāĻ—āĻĢāϞ + (āĻ­āĻžāĻ—āĻļ⧇āώ/āĻ­āĻžāϜāĻ•)

 

Practice:

Q# āĻ­āĻžāϜāĻ• 10, āĻ­āĻžāĻ—āĻĢāϞ ā§§ā§Ļ āĻāĻŦāĻ‚ āĻ­āĻžāĻ—āĻļ⧇āώ 1 āĻšāϞ⧇, āĻ­āĻžāĻœā§āϝ āĻ•āϤ?

Solution: āφāĻŽāϰāĻž āϜāĻžāύāĻŋ, āĻ­āĻžāĻœā§āϝ(p) = āĻ­āĻžāĻ—āĻĢāϞ(q) x āĻ­āĻžāϜāĻ•(k) + āĻ­āĻžāĻ—āĻļ⧇āώ(r)

∴ āĻ­āĻžāĻœā§āϝ(p) = 10  x 10 + 1 = 101 Ans.

#

#

*** odd āϏāĻ‚āĻ–ā§āϝāĻ• divisor āĻŦ⧇āϰ āĻ•āϰāĻžāϰ āĻŸā§āϰāĻŋāĻ•āϏ- āĻ“āχ number āĻāϰ square value……

# āĻļāĻ°ā§āϟāĻ•āĻžāϟ āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āύāĻŋāϝāĻŧāĻŽ-

ā§Ģ āĻĻāĻŋā§Ÿā§‡ āĻļāĻ°ā§āϟāĻ•āĻžāϟ āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āύāĻŋāϝāĻŧāĻŽ:

⧍ā§Ģ āĻĻā§āĻŦāĻžāϰāĻž –

 

Divisible:

Divisible (āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ): āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āφāϰ⧇āĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāσāĻļ⧇āώ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻž āϗ⧇āϞ⧇[āĻ­āĻžāĻ—āĻļ⧇āώ āĻĨāĻžāĻ•āĻŦ⧇āύāĻž] āĨ¤ āϝ⧇āĻŽāύ- 39 āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ 13 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤

Evenly Divisible = divisible = Exactly Divisible(āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ): āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āφāϰ⧇āĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āĻĒāĻ°Â āĻ­āĻžāĻ—āĻļ⧇āώ āĻĨāĻžāĻ•āĻŦ⧇āύāĻžāĨ¤ (means have no remainder)

Exact Divisibility by 2: 2 divide all even numbers exactly such as 2, 4, 6, 8, 12, 14, 16, 18, 20, etc. We see that the unit digit of these numbers is 0, 2, 4, 6 or 8.

The product of 2 and a whole number is called an even number.

A number is exactly divisible by 2 it its unit digit is 0, 2, 4 6 or 8.

Divisibiility rules: 2,4,5 || 3,6,9 ||

  • i) āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻāĻ•āĻ• āĻ¸ā§āĻĨāĻžāύ⧀āϝāĻŧ āĻ…āĻ‚āĻ•āϟāĻŋ āĻļā§‚āĻ¨ā§āϝ āĻšāϞ⧇ āĻ…āĻĨāĻŦāĻž āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϞ⧇, āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž,
    āĻāĻ•āϟāĻŋ integer 2 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāĻŦ⧇ āϝāĻĻāĻŋ integer āĻāϰ āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž(units digit)āϟāĻŋ even or 0 āĻšāϝāĻŧāĨ¤ āϝ⧇āĻŽāύ- 598 integer āϟāĻŋ 2
    āĻĻāĻŋāϝāĻŧ⧇ divisible.
  • ii) āĻāĻ•āϟāĻŋ integer 3 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāĻŦ⧇ āϝāĻĻāĻŋ integer āĻāϰ digit āϗ⧁āϞ⧋āϰ sum 3 āĻĻāĻŋāϝāĻŧ⧇ divisible(āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ) āĻšā§Ÿ. āϝ⧇āĻŽāύ : 2145 integer āϟāĻŋ 3 āĻĻāĻŋāϝāĻŧ⧇ divisible āϕ⧇āύāύāĻž 2 + 1 + 4 + 5 = 12 āĻāĻŦāĻ‚ 12 integer āϟāĻŋ 3 āĻĻāĻŋāϝāĻŧ⧇ divisible.
  • iii) āĻāĻ•āϟāĻŋ integer 4 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāĻŦ⧇ āϝāĻĻāĻŋ integer āϟāĻŋāϰ āĻļ⧇āώ āĻĻ⧁āϟāĻŋ āĻĄāĻŋāϜāĻŋāϟ 4 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšā§Ÿ(/āĻļ⧇āώ āĻĻ⧁āϟāĻŋ āĻĄāĻŋāϜāĻŋāϟ 00 āĻšāϞ⧇āĻ“) 4 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤ āϝ⧇āĻŽāύ: 440 āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ āĻļ⧇āώ āĻĻ⧁āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž 40, āϝāĻžāϕ⧇ 4 āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ—(divisible) āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤ āĻ…āĻ¨ā§āϝāĻ­āĻžāĻŦ⧇ 440 integer āϟāĻŋ 4 āĻĻāĻŋā§Ÿā§‡ divisible āϕ⧇āύāύāĻž 40 integer āϟāĻŋ 4 āĻĻāĻŋā§Ÿā§‡ divisible.
  • iv) āĻāĻ•āϟāĻŋ integer 5 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāĻŦ⧇ āϝāĻĻāĻŋ āϤāĻžāϰ āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž(units digit)āϟāĻŋ 0 āĻŦāĻž 5 āĻšāϝāĻŧāĨ¤ āϝ⧇āĻŽāύ : 1115
  • vii) āĻāĻ•āϟāĻŋ integer 6 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāĻŦ⧇ āϝāĻĻāĻŋ integer āϟāĻŋ 2 āĻ“ 3 āωāϭ⧟āϕ⧇ āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāϝāĻŧāĨ¤ āĻŦāĻŋāĻ•āĻ˛ā§āĻĒ āϏāĻšāϜ āύāĻŋ⧟āĻŽāσ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻž āĻ“ āĻāĻ•āχ āϏāĻžāĻĨ⧇ sum 3 āĻĻāĻŋāϝāĻŧ⧇ divisible(āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ) āĻšāϞ⧇āĨ¤
    • Example: For 123456,
    • Split the number into groups of three digits, 123 & 456.
    • 123−456=−333; if -333 is divisible by 7, so is the original number.
      (āφāϰāĻ“ āĻŦ⧜ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϞ⧇ āϏ⧇āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, āĻœā§‹ā§œ three digits āϗ⧁āϞ⧋ āĻĨ⧇āϕ⧇ āĻŦāĻŋāĻœā§‹ā§œ three digits āϗ⧁āϞ⧋āϕ⧇ āĻŦāĻŋā§Ÿā§‹āĻ— āĻ•āϰ⧇ āĻāϰāĻĒāϰ 7 āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāĻŦ) āϏāĻŦāĻšā§‡ā§Ÿā§‡ āϏāĻšāϜ āύāĻŋ⧟āĻŽ- https://youtu.be/17nXsZqEOTM?si=A4oHy3YsL_RKVBTZvii) āĻāĻ•āϟāĻŋ integer 7 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻ•āĻŋāύāĻž āϤāĻž āĻĻ⧁āχāĻ­āĻžāĻŦ⧇ āĻŦ⧇āϰ āĻ•āϰāĻž āϝāĻžā§Ÿ-
      1. Subtract Method (Basic Method for small Numbers): āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻžāϤ⧇ āĻĄāĻŦāϞ āĻ•āϰāϞ⧇ āϝāĻž āĻšā§Ÿ āϏ⧇āϟāĻž āĻŽā§āϞ āϏāĻ‚āĻ–ā§āϝāĻžāϰāϰ āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦā§āϝāĻžāϤāĻŋāϤ āĻŦāĻžāĻ•āĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻĨ⧇āϕ⧇ āĻŦāĻŋā§Ÿā§‹āĻ— āĻĻ⧇āĻŦ, āĻāϰāĻĒāϰ ā§­ āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāĻŦāĨ¤ (āĻŦ⧜ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϞ⧇ āĻĒāĻ°ā§āϝāĻžā§ŸāĻ•ā§āϰāĻŽā§‡ āĻāĻ­āĻžāĻŦ⧇ āĻ•āϰāϤ⧇ āĻĨāĻžāĻ•āĻŦāĨ¤)

      • Example: For 826
      • Double the last digit 6→12
      • Subtract 82−12=70, which is divisible by 7.

      2. Forming Groups of Three Method (Advanced Method for Large Numbers):

  • viii) āĻāĻ•āϟāĻŋ integer 8 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāĻŦ⧇ āϝāĻĻāĻŋ āĻĄāĻžāύ āĻĻāĻŋāϕ⧇āϰ āϤāĻŋāύāϟāĻŋ digit āĻāϰ integerāϟāĻŋ ā§Ē āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāϝāĻŧ āĨ¤
    āϝ⧇āĻŽāύ- 44816 integerāϟāĻŋ 8 āĻĻāĻŋā§Ÿā§‡ divisible. āϕ⧇āύāύāĻž 816 integerāϟāĻŋ 8 āĻĻāĻŋā§Ÿā§‡ divisible.
  • ix) āĻāĻ•āϟāĻŋ integer 9 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāĻŦ⧇ āϝāĻĻāĻŋ sum of the digits 9 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāϝāĻŧāĨ¤
    12339 integerāϟāĻŋ 9 āĻĻāĻŋā§Ÿā§‡ divisible āϕ⧇āύāύāĻž 1+2+3+3+9 = 18 integerāϟāĻŋ 9 āĻĻāĻŋā§Ÿā§‡ divisible.
  • xiii) āĻāĻ•āϟāĻŋ integer 10 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāĻŦ⧇ āϝāĻĻāĻŋ āĻāϰ units digit 0 āĻšāϝāĻŧāĨ¤
  • ix) āĻāĻ•āϟāĻŋ integer 11 āĻĻāĻŋāϝāĻŧ⧇ divisible āĻšāĻŦ⧇ āϝāĻĻāĻŋ āĻĄāĻžāύ āĻĻāĻŋāĻ• āĻĨ⧇āϕ⧇ odd numbered place āϗ⧁āϞ⧋āϰ sum of the digit āĻāĻŦāĻ‚ even numbered place āϗ⧁āϞ⧋āϰ sum of the digit āĻāϰ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ 0 āĻŦāĻž 11 āĻĻā§āĻŦāĻžāϰāĻž divisible āĻšāϝāĻŧāĨ¤
    āϝ⧇āĻŽāύ- 411213 integer āϟāĻŋ 11 āĻĻāĻŋā§Ÿā§‡ divisible āϕ⧇āύāύāĻž (1+2+3)-(4+1+1)=0 Divisor āĻāϰ divisibility rule āĻŽāĻžāύ⧇ āύāĻž āĻāĻŽāύ āϕ⧋āύ⧋ Dividend āύ⧇āχ āϝāĻž evenly divisible.
  • āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ ⧧⧍ āĻĻā§āĻŦāĻžāϰāĻž divisible āĻ•āϰāĻž āϝāĻžāĻŦ⧇ āϝāĻĻāĻŋ āϤāĻžāϕ⧇ ā§Š āĻ“ ā§Ē āωāϭ⧟ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž divisible āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤
  • Divisibility By 13: āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻžāϤ⧇ 4āϗ⧁āĻŖ āĻ•āϰāϞ⧇ āϝāĻž āĻšā§Ÿ āϏ⧇āϟāĻž āĻŽā§āϞ āϏāĻ‚āĻ–ā§āϝāĻžāϰāϰ āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦā§āϝāĻžāϤāĻŋāϤ āĻŦāĻžāĻ•āĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻĨ⧇āϕ⧇ āĻŦāĻŋā§Ÿā§‹āĻ— āĻĻ⧇āĻŦ, āĻāϰāĻĒāϰ 13 āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāĻŦāĨ¤ (āĻŦ⧜ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϞ⧇ āĻĒāĻ°ā§āϝāĻžā§ŸāĻ•ā§āϰāĻŽā§‡ āĻāĻ­āĻžāĻŦ⧇ āĻ•āϰāϤ⧇ āĻĨāĻžāĻ•āĻŦāĨ¤)
  • Divisibility By 14: A number is divisible by 14, if it is divisible by 2 as well as 7.12.
  • Divisibility By 15: A number is divisible by 15, if it is divisible by both 3 and 13.
  • Divisibility By 16: A number is divisible by 16, if the number formed by the last 4 digits is divisible by 16. Ex. 7957536 is divisible by 16, since the number formed by the last four digits is 7536, which is divisible by 16.
  • Divisibility By 17:
    Divisibility By 19:
    Divisibility By 24: A given number is divisible by 24, if it is divisible by both 3 and 8.Divisibility By 25: āĻļ⧇āώ āĻĻ⧁āχ āϘāϰ ⧍ā§Ģ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšāϞ⧇āĨ¤Divisibility By 40: A given number is divisible by 40, if it is divisible by both 5 and 8.Divisibility By 80: A given number is divisible by 80, if it is divisible by both 5 and 16.
    Note: If a number is divisible by p as well as q, where p and q are co-primes, then the given number is divisible by pq.
    If p and q are not co-primes, then the given number need not be divisible by pq, even when it is divisible by both p and q.
    Ex. 36 is divisible by both 4 and 6, but it is’ not divisible by (4 x 6) = 24, since
    4 and 6 are not co-primes.

Divisibility āϰ āĻāχ āϏāĻŦ rule āĻāϰ āωāĻĒāϰ āĻ­āĻŋāĻ¤ā§āϤāĻŋ āĻ•āϰ⧇ āϕ⧋āύ integer āĻŦāĻĄāĻŧ āĻ…āĻ¨ā§āϝ āϕ⧋āύ divisor āĻĻāĻŋāϝāĻŧ⧇ divisible āĻ•āĻŋāύāĻž āϤāĻž āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤

*** Each number is divisible by its factors; so factors are also called divisors(āĻ­āĻžāϜāĻ•)āĨ¤Â  [āĻ­āĻžāϜāĻ•(divisor) āϏāĻ‚āĻ–ā§āϝāĻž āĻŦ⧇āϰ āĻ•āϰāĻžāϰ āĻ…āĻ°ā§āĻĨ āĻšāϞ⧋ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϕ⧇ āĻŽā§‹āϟ āĻ•āϝāĻŧāϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāĻž āϝāĻžāϝāĻŧ]

āĻ•āϤ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ ? āĨ¤āĨ¤ Divisibility āĨ¤āĨ¤ Number System āĨ¤in BengaliāĨ¤āĨ¤ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ

*** āϤāĻŋāύ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āϤāĻŋāύ āĻ…āĻ™ā§āϕ⧇āϰ āĻĒā§āϰāĻĨāĻŽ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āĻšāĻŦ⧇ = 102. āĻ•āĻžāϰāĻŖ, 102 āĻāϰ āĻ…āĻ™ā§āĻ•āϗ⧁āϞāĻŋ āϝ⧋āĻ— āĻ•āϰāϞ⧇ āϝ⧋āĻ—āĻĢāϞ āĻšāĻŦ⧇ = 1 + 0 + 2 = 3, āϝāĻž āϤāĻŋāύ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻāĻŦāĻ‚ āϤāĻŋāύ āĻ…āĻ™ā§āϕ⧇āϰ āĻĒā§āϰāĻĨāĻŽ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤

*** āϤāĻŋāύ āĻ…āĻ™ā§āϕ⧇āϰ āĻ•ā§āώ⧁āĻĻā§āϰāϤāĻŽ āϏāĻ‚āĻ–ā§āϝāĻž = 100.

# āĻĒā§āϰāĻžāĻ•āϟāĻŋāϏāσ-

# ā§Ģā§Ļ āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻāϰ āĻŽāĻ§ā§āϝ⧇ ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āϏāĻ‚āĻ–ā§āϝāĻž āĻ•āϝāĻŧāϟāĻŋ?

āĻļāĻ°ā§āϟāĻ•āĻžāϟ āύāĻŋ⧟āĻŽ-
ā§§āĻŽā§‡, ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻŦāĨ¤
ā§Ģā§Ļ/⧍ = ⧍ā§Ģ
ā§§ā§Ļā§Ļ/⧍ = ā§Ģā§Ļ
⧍⧟āϤ, āĻāĻĻ⧇āϰ āĻŦāĻŋā§Ÿā§‹āĻ— āĻ•āϰāĻŦāĨ¤
ā§Ģā§Ļ – ⧍ā§Ģ = ⧍ā§Ģ
ā§Šā§ŸāϤ, āĻĒā§āϰāĻļā§āύ⧇ āĻĻā§‡ā§ŸāĻž āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻžāϰ āĻĻāĻŋāϕ⧇ āϞāĻ•ā§āώ āĻ•āϰāĻŦ āϝ⧇, āĻāϟāĻŋ āύāĻŋāσāĻļ⧇āώ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻž āϗ⧇āϏ⧇ āĻ•āĻŋāύāĻžāĨ¤ āύāĻŋāσāĻļ⧇āώ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻž āϗ⧇āϞ⧇ āĻāϟāĻŋāϰ āϏāĻžāĻĨ⧇ ā§§ āϝ⧋āĻ— āĻ•āϰ⧇ āĻĻ⧇āĻŦāĨ¤
⧍ā§Ģ + ā§§ = 26

# ā§§ā§Ļā§Ļ āĻĨ⧇āϕ⧇ ⧍ā§Ļā§Ļ āĻāϰ āĻŽāĻ§ā§āĻ¯ā§‡ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āϏāĻ‚āĻ–ā§āϝāĻž āĻ•āϝāĻŧāϟāĻŋ?

(198 – 102)/3 + 1 = 33 āϝ⧇āĻ–āĻžāύ⧇, {(āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āĻ­āĻžāĻ— āϝāĻžāĻ“ā§ŸāĻž āϏāĻ‚āĻ–āĻž – āϏāĻ°ā§āĻŦ āύāĻŋāĻ¨ā§āĻŽ āĻ­āĻžāĻ— āϝāĻžāĻ“ā§ŸāĻž āϏāĻ‚āĻ–āĻž) / āϏ⧇āχ āϏāĻ‚āĻ–ā§āϝāĻž} + ā§§
āϤāĻžāĻšāϞ⧇ āϝ⧇āĻ•āύ⧋ āĻĒā§āϰāĻļā§āύ⧇āϰ āωāĻ¤ā§āϤāϰ āĻŦ⧇āϰ āĻ•āϰāĻž āϝāĻžāĻŦ⧇āĨ¤

āφāϰāĻ“ āĻŸā§‡āĻ•āύāĻŋāĻ• āĻ–āĻžāϟāĻŋā§Ÿā§‡, ⧍ā§Ļā§Ļ – ā§§ā§Ļā§Ļ = ā§§ā§Ļā§Ļ,  Â ā§§ā§Ļā§Ļ/ā§Š = ā§Šā§Š.ā§Šā§Ē = ā§Šā§Š

āĻļāĻ°ā§āϟāĻ•āĻžāϟ āύāĻŋ⧟āĻŽ-
ā§§āĻŽā§‡, ⧍ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻŦāĨ¤
ā§§ā§Ļā§Ļ/ā§Š = ā§Šā§Š.ā§Šā§Š
⧍ā§Ļā§Ļ/ā§Š = ā§Ŧā§Ŧ.ā§Ŧā§Ŧ
⧍⧟āϤ, āĻāĻĻ⧇āϰ āĻŦāĻŋā§Ÿā§‹āĻ— āĻ•āϰāĻŦāĨ¤
ā§Ŧā§Ŧ.ā§Ŧā§Ŧ – ā§Šā§Š.ā§Šā§Š = ā§Šā§Š.ā§Šā§Š
ā§Šā§ŸāϤ, āĻĒā§āϰāĻļā§āύ⧇ āĻĻā§‡ā§ŸāĻž āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻžāϰ āĻĻāĻŋāϕ⧇ āϞāĻ•ā§āώ āĻ•āϰāĻŦ āϝ⧇, āĻāϟāĻŋ āύāĻŋāσāĻļ⧇āώ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻž āϗ⧇āϏ⧇ āĻ•āĻŋāύāĻžāĨ¤ āϝāĻĻāĻŋ āύāĻŋāσāĻļ⧇āώ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻž āϝ⧇āϤ āĻāϟāĻŋāϰ āϏāĻžāĻĨ⧇ ā§§ āϝ⧋āĻ— āĻ•āϰ⧇ āĻĻā§‡ā§ŸāĻž āĻšāϤāĨ¤

 

# ā§Ģ āĻ“ ⧝ā§Ģ āĻāϰ āĻŽāĻ§ā§āϝ⧇ ā§Ģ āĻ“ ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āϏāĻ‚āĻ–ā§āϝāĻž āĻ•āϤāϟāĻŋ?

Solution: ā§Ģ āĻāĻŦāĻ‚ ā§Š āĻāϰ āϞ.āϏāĻž.āϗ⧁ = ā§§ā§Ģ

ā§Ģ āĻāĻŦāĻ‚ ⧝ā§Ģ āĻāϰ āĻŽāĻ§ā§āϝ⧇ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ  (⧝ā§Ģ – ā§Ģ) = ⧝ā§Ļ

āϏāĻ‚āĻ–ā§āϝāĻž āĻĻ⧁āϟāĻŋāϰ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ /  āϞāϏāĻžāϗ⧁  = ⧝ā§Ļ/ā§§ā§Ģ =  ā§Ŧ

āĻ…āϤāĻāĻŦ, ā§Ģ āĻĨ⧇āϕ⧇ ⧝ā§Ģ āĻāϰ āĻŽāĻ§ā§āϝ⧇ ā§Š āĻāĻŦāĻ‚ ā§Ģ āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āϏāĻ‚āĻ–ā§āϝāĻž ā§Ŧ āϟāĻŋāĨ¤

āϝāĻĨāĻžāσ- ā§§ā§Ģ, ā§Šā§Ļ, ā§Ēā§Ģ, ā§Ŧā§Ļ, ā§­ā§Ģ, ⧝ā§Ļ

# āĻĻ⧁āχ āĻ…āĻ™ā§āĻ• āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻ•āϤāϗ⧁āϞāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž 3 āĻĻā§āĻŦāĻžāϰāĻž āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āϰ⧂āĻĒ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ?

Solution: āĻĒā§āϰāĻļā§āύ āĻ…āύ⧁āϝāĻžā§Ÿā§€ āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϟāĻŋ āĻšāϞ⧋, 12,15,18â€Ļ..99

āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ,a=12 āĻāĻŦāĻ‚ āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ,d=3

āϏ⧁āϤāϰāĻžāĻ‚, a+(n-1)d=99

āĻŦāĻž,12+(n-1)3=99

āĻŦāĻž,12+3n-3=99 [āĻļāĻ°ā§āϟāĻ•āĻžāϟ āϏ⧂āĻ¤ā§āϰ, X = [(āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž – āĻĒā§āϰāĻĨāĻŽ āϏāĻ‚āĻ–ā§āϝāĻž) + d]//d]

āĻŦāĻž,3n=90

āĻŦāĻž,n=30

āĻ…āĻ°ā§āĻĨāĻžā§Ž ā§Šā§Ļ āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž ⧍āĻ…āĻ™ā§āϕ⧇āϰ āφāϛ⧇ āϝāĻž ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāϜāĻŋāϤ āĻšā§ŸāĨ¤

# āĻ­āĻžāϜāĻ•/divisor/factor āϏāĻ‚āĻ–ā§āϝāĻž āĻŦ⧇āϰ āĻ•āϰāĻž-

#

 

āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ – āĻļāĻ°ā§āϟāĻ•āĻžāϟ āĻĒāĻĻā§āϧāϤāĻŋ ( āĻĻā§āĻŦāĻŋāϤ⧀āϝāĻŧ āĻ…āĻ‚āĻļ)

UNIT DIGIT + āĻ­āĻžāĻ—āĻļ⧇āώ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ(Find Remainder) /Number System:

x = xš x² xÂŗ x⁴

2 = 2 4 8 6

3 = 3 9 7 1

4 = 4, 6

  • 5=5
  • 6 = 6

7 = 7 9 3 1

8 = 8 4 2 6

9 = 9 1

āĻ­āĻžāĻ—āĻļ⧇āώ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ- 

Power Even = 1 (Reminder)

Power Odd = base

#

āĻ­āĻžāĻ—āĻļ⧇āώ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ ( Find Remainder )

Remainder Tricks |Remainder finding | āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ | Remainder theorem in Bengali | SSCE |

āĻ­āĻžāĻ—āĻļ⧇āώ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĻžāϰ āϏāĻšāϜ āĻĒāĻĻā§āϧāϤāĻŋ āĨ¤ How to Find Remainder in Division ? [ Bengali ] | Number System

Practice:

 

 Factor/Factorisation (āϗ⧁āĻŖāĻ¨ā§€ā§ŸāĻ•/āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ•/āĻ­āĻžāϜāϕ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž):

āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āϝ⧇ āϏāĻ•āϞ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāσāĻļ⧇āώ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻž āϝāĻžāϝāĻŧ āϏ⧇āϏāĻŦ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ Factor āĻŦāϞ⧇āĨ¤

* 1 āĻšāĻšā§āϛ⧇ āϏāĻŦ āύāĻžāĻŽā§āĻŦāĻžāϰ āĻāϰāχ common factor.

* (0 āĻāĻŦāĻ‚ 1 āĻŦā§āϝāϤ⧀āϤ) āĻĒā§āϰāϤāĻŋāϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ•āĻŽāĻĒāĻ•ā§āώ⧇ āĻĻ⧁āϟāĻŋ āϗ⧁āĻŖāύ⧀āϝāĻŧāĻ•(factor) āϰāϝāĻŧ⧇āϛ⧇, āĻāĻ•āϟāĻŋ āĻšāϞ 1(āϏāĻŦāϏāĻŽā§Ÿ) āĻāĻŦāĻ‚ āĻŦāĻžāĻ•āĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āĻšāϞ āϐ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāχ(āύāĻŋāĻœā§‡āχ)āĨ¤

āϝ⧇āĻŽāύ-

āĻĒāĻĻā§āϧāϤāĻŋ ā§§āσ #

āĻĒāĻĻā§āϧāϤāĻŋ 2āσ(āĻ…āĻ¨ā§āϝāĻ­āĻžāĻŦ⧇)

Q: 12 āĻ“ 16 āĻāϰ G.C.F āĻ•āϤ?

The factors of 12 = 1, 2, 3, 4, 6, 12 āĻāϗ⧁āϞ⧋ (ā§ŦāϟāĻŋ)

The factors of 16 = 1, 2, 4, 8, 16 āĻāϗ⧁āϞ⧋ (ā§ĢāϟāĻŋ)

The common factors of 12 & 16 = 1, 2, 4 āĻāϗ⧁āϞ⧋ (ā§ŠāϟāĻŋ)

Highest Common Factor(H.C.F.) āĻŦāĻž Gretest Common Factor(G.C.F) āĻŦāĻž (G.C.M.) āĻŦāĻž (G.C.D.) āĻŦāĻž [āĻ—.āϏāĻž.āϗ⧁.]:

The Highest Common Factor (H.C.F.) of 12 & 16  = 4

shortcut: 12=3šx2²,  16 = 2⁴;    12 & 16 = 2²=4 (āĻļāĻ°ā§āϟāĻ•āĻžāϟāσ G.C.F āĻ āĻļ⧁āϧ⧁ āĻ•āĻŽāύ āĻĒāĻžāĻ“ā§ŸāĻžāϰ āĻāϰ āϏāĻŦāĻšā§‡ā§Ÿā§‡ āĻ•āĻŽ āϏāĻ‚āĻ–ā§āϝāĻ• āύ⧇āĻŦ)

āĻĒāĻĻā§āϧāϤāĻŋ 3āσ (āĻ—.āϏāĻž.āϗ⧁ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ⧇ āĻļāĻ°ā§āϟāĻ•āĻžāϟ āĻĒāĻĻā§āϧāϤāĻŋ) –link2– [āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻāϟāĻž āĻŦ⧇āĻ¸ā§āϟ āĻŸā§āϰāĻŋāĻ•ā§āϏāϏ]

# āĻŽāύ⧇ āϰāĻžāĻ–āĻŦ⧇. āĻ—.āϏāĻž.āϗ⧁ āĻāϰ āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āĻŽāĻžāύ āĻšāϤ⧇ āĻĒāĻžāϰ⧇ āϏāĻŦāĻ•āϟāĻŋ āĻāϰ āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϏāĻŽāĻžāύ āĻŦāĻž āϛ⧋āϟāĨ¤ āϝ⧇āĻŽāύ- 4,8,36, 630 āĻāχ āĻāϰ āĻŽāĻžāύ āĻšāϤ⧇ āĻĒāĻžāϰ⧇ 4 āĻŦāĻž āĻāϰ āϛ⧋āϟ(āϏāĻ°ā§āĻŦāύāĻŋāĻŽā§āύ 1)āĨ¤

# āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋ āĻŦ⧇āĻļāĻŋ āĻšāϞ⧇- āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāĻžāĻ›āĻžāχ āĻ•āϰāĻŦ, āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ āĻĄāĻŋāϰ⧇āĻ•ā§āϟ āϗ⧁āĻŖāĻŋāϤāĻ• āĻŦ⧜ āϏāĻ‚āĻ–ā§āϝāĻžā§Ÿ āĻĒāĻžāĻ“ā§ŸāĻž āϗ⧇āϞ⧇ āϐāϟāĻŋ āĻĄāĻŋāϰ⧇āĻ•ā§āϟ āĻŦāĻžāĻĻāĨ¤ āĻāĻ­āĻžāĻŦ⧇ āύāĻž āĻŽāĻŋāϞāϞ⧇ next testing āĻšāĻŦ⧇- āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϕ⧇ devide āĻ•āϰ⧇ āĻ•āϰ⧇ āĻĻ⧇āĻ–āĻŦ, āϝāĻžāϤ⧇ āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ devideāĻ•ā§ƒāϤ āĻŽāĻžāύāϟāĻŋ(āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ) āĻĻāĻŋā§Ÿā§‡ āĻšāϞ⧇āĻ“ āϝ⧇āύ āĻŦāĻžāĻ•āĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋ āϗ⧁āĻŖāĻŋāϤāĻ• āĻ•āϰāĻž āϝāĻžā§Ÿ, āϤāĻžāĻšāϞ⧇ āϐ(āϏāĻ‚āĻ–ā§āϝāĻž)āϟāĻŋāχ āĻ—.āϏāĻž.āϗ⧁āĨ¤

āĻ…āĻĨāĻŦāĻž, āϏāĻŦāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž devide āĻ•āϰāĻž āϝāĻžāϝāĻŧ āϐāϟāĻŋāχ āĻ—.āϏāĻž.āϗ⧁āĨ¤ (āϏāĻŦāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŽāĻ§ā§āϝ⧇ āĻ¨ā§āϝ⧂āύāϤāĻŽ āĻĻ⧁āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ devide āĻ•āϰāĻž āύāĻž āϗ⧇āϞ⧇ 1 āχ āĻšāĻŦ⧇ āĻ—.āϏāĻž.āϗ⧁āĨ¤
devide āĻ•āϰāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, āϝāϤāĻŦāĻžāϰ devide āĻ•āϰāĻž āϝāĻžāĻŦ⧇ āϤāϤāĻŦāĻžāϰ āϐ āϏāĻ‚āĻ–ā§āϝāĻž(āϗ⧁āϞ⧋) note āĻ•āϰ⧇ āϞāĻŋāϖ⧇ āϰāĻžāĻ–āĻŦ, note āĻ•āϰ⧇ āϰāĻžāĻ–āĻž āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋ āϗ⧁āĻŖ āĻ•āϰāϞ⧇āχ āϐāϟāĻŋāχ āĻ—.āϏāĻž.āϗ⧁āĨ¤

āωāĻĻāĻžāĻšāϰāĻŖ- 

# 5, 10 āĻāϰ āĻ—.āϏāĻž.āϗ⧁ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĨ¤

5/10 (5)= (āĻŦāĻž, 5/5, 10/5) āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇= 5

# 12, 28 āĻāϰ āĻ—.āϏāĻž.āϗ⧁ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĨ¤

12/28 (2) = 6/14 [2] = 3/7 (āĻŦāĻž, 12/12, 28/2) āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇= 2 x 2 = 4

# 20, 25, 30 āĻāϰ āĻ—.āϏāĻž.āϗ⧁ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĨ¤

20/4 = 5 [āϏāĻŦāĻšā§‡ā§Ÿā§‡ āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ devide āĻŽāĻžāύ 5, āϝāĻž āĻŦāĻžāĻ•āĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋āϰāĻ“ āϗ⧁āĻŖāĻŋāϤāĻ• āĻšā§ŸāĨ¤ āĻāϜāĻ¨ā§āϝ āĻāϟāĻžāχ āύāĻŋāĻ°ā§āϪ⧇āϝāĻŧ āĻ—.āϏāĻž.āϗ⧁]

#

Prime Factorisation(āĻŽā§ŒāϞāĻŋāĻ• āϗ⧁āĻŖāύ⧀āϝāĻŧāĻ•):

āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ ā§§āĻ“ āϐ āϏāĻ‚āĻ–ā§āϝāĻž āĻ›āĻžāĻĄāĻŧāĻž āĻ…āĻ¨ā§āϝ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšāϝāĻŧ āύāĻž āϤāĻžāϕ⧇ āĻŽā§ŒāϞāĻŋāĻ• āϗ⧁āĻŖāύ⧀āϝāĻŧāĻ• āĻŦāϞ⧇āĨ¤āϝ⧇āĻŽāύ- 5 āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āĻāĻ• āĻ“ 5 āĻ›āĻžāĻĄāĻŧāĻž āĻ…āĻ¨ā§āϝ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšāϝāĻŧ āύāĻžāĨ¤

# 350 āĻāϰ unique dna = 2š5²7š (350 = 2x5x5x7)

āϤāĻžāĻšāϞ⧇ āĻĻ⧇āĻ–āĻž āϝāĻžāĻšā§āϛ⧇, 350 āĻāϰ Prime Factor = 2, 5, 7

āĻāĻŦāĻ‚Â 350 āĻāϰ āĻŽā§‹āϟ factor = (1+1) x (2+1) x (1+1) = 12 āϟāĻŋ

āĻŦāĻž,

total factors(number) āĻŦ⧇āϰ āĻ•āϰāĻžāϰ āωāĻĒāĻžā§Ÿ: unique dna āĻāϰ āĻĒā§āϰāϤāĻŋāϟāĻŋ āϘāĻžāϤ⧇āϰ āϏāĻžāĻĨ⧇ 1 āϝ⧋āĻ— āĻ•āϰ⧇ āϏ⧇āϗ⧁āϞ⧋ āϗ⧁āĻŖ āĻ•āϰāĻ˛ā§‡Â total factor numbers āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§ŸāĨ¤

Q: how many factor(numbers) of 350?

Ans: 350 āĻāϰ unique dna = 2š5²7š (350 = 2x5x5x7)

āϤāĻžāĻšāϞ⧇ āĻĻ⧇āĻ–āĻž āϝāĻžāĻšā§āϛ⧇, 350 āĻāϰ āĻŽā§‹āϟ factor = (1+1) x (2+1) x (1+1) = 12 āϟāĻŋ

 

Multiples(āϗ⧁āĻŖāĻŋāϤāĻ•/āϗ⧁āύ⧇āϰ āύāĻžāĻŽāϟāĻž):

āĻāϟāĻŋ Factor āĻāϰ āĻŦāĻŋāĻĒāϰ⧀āϤāĨ¤ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻĒā§‚āĻ°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻāĻŋāϝāĻŧ⧇ āϗ⧁āĻŖ āĻ•āϰāϞ⧇ āϝ⧇ āϗ⧁āĻŖāĻĢāϞ āϏāĻ‚āĻ–ā§āϝāĻž āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāϝāĻŧ, āϤāĻžāϕ⧇ āϐ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻŋāϤāĻ• āĻŦāϞ⧇āĨ¤

* Zero is a multiple of every integers but is not a factor(the only number that zero can be a factor of is zero)

* Factor are not infinite, but multiples are infinite.

Least Common Multiple (L.C.M.) [āϞ.āϏāĻž.āϗ⧁]:

āĻĒāĻĻā§āϧāϤāĻŋ ā§§āĻƒÂ āϝ⧇āĻŽāύ-

Q: 12 āĻ“ 16 āĻāϰ L.C.M. āĻŦ⧇āϰ āĻ•āϰāĨ¤Â 

The multiples of 12 = 12, 24, 36, 48, 60, 72, 84, 96…144…192

The multiples of 16 = 16, 32, 48, 64, 80, 96, 112….144…192

The common multiples of 12 & 16 = 18, 96, 144, 192.

The Least Common Multiple (L.C.M.) of 12 and 16 = 48

shortcut: 12=3šx2²,  16 = 2⁴;    12 & 16 = 2⁴x3š=48 (āĻļāĻ°ā§āϟāĻ•āĻžāϟāσ L.C.M āĻÂ āĻāĻ­āĻžāϰ⧇āϜ āϏāĻŦāϗ⧁āĻ˛ā§‹Â āĻĨ⧇āϕ⧇ āĻĒāĻžāĻ“ā§ŸāĻžāϰ āĻāϰ āϏāĻŦāĻšā§‡ā§Ÿā§‡ āĻŦ⧇āĻļāĻŋ āϏāĻ‚āĻ–ā§āϝāĻ• āύ⧇āĻŦ)

āĻĒāĻĻā§āϧāϤāĻŋ ⧍āσ(āĻ…āĻ¨ā§āϝāĻ­āĻžāĻŦ⧇)

āĻĒāĻĻā§āϧāϤāĻŋ ā§ŠāĻƒÂ 

total multiples(number) āĻŦ⧇āϰ āĻ•āϰāĻžāϰ āωāĻĒāĻžā§Ÿ:

Q: how many Multiple(numbers) in (1-100) of 3?

Ans: {(last multiple – first multiple)/3} + 1

{(99-3)/3} + 1 = 33

āĻļāĻ°ā§āϟāĻ•āĻžāϟ: (last Multiple āϜāĻžāύāĻž āĻĨāĻžāĻ•āϞ⧇ āĻ­āĻžāĻ— āĻĻāĻŋāϞ⧇āχ āĻšā§Ÿ, 99/3=33)

āφāϰāĻ“ āĻāĻ•āϟāĻŋ āωāĻĻāĻžāĻšāϰāĻŖ: how many Multiple(numbers) in (1-100) of 3?

Ans: 100/4=25 (āĻļāĻ°ā§āϟāĻ•āĻžāϟ)

Practice:

#

or, and āĻāϗ⧁āϞ⧋āϰ āĻĻ⧁āχāϟāĻžāϰ āĻĻ⧁āχ meaning.

  • or āĻĻā§āĻŦāĻžāϰāĻž A U B āϕ⧇ āĻŦā§‹āĻāĻžā§ŸāĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž either A or B.  ((( U āĻšāĻšā§āĻ›ā§‡Â  or [āĻ…āĻĨāĻŦāĻž] )))
  •  and āĻĻā§āĻŦāĻžāϰāĻž A∊B āĻ…āĻ°ā§āĻĨāĻžā§Ž Both āϕ⧇ āĻŦā§‹āĻāĻžā§ŸāĨ¤

āϏ⧁āĻ¤ā§āϰāσ A U B = A + B – A∊B

1-100 āĻāϰ āĻŽāĻ§ā§āϝ⧇: A∊B āĻ…āĻ°ā§āĻĨāĻžā§Ž 3×4=12 āφāϛ⧇ 8 āϟāĻŋāĨ¤ āĻāĻŦāĻ‚ A∊B āĻ…āĻ°ā§āĻĨāĻžā§Ž 4×5=20 āφāϛ⧇ 8 āϟāĻŋāĨ¤

# āĻ•āĻŋāϛ⧁ āϏ⧂āĻ¤ā§āϰāσ

#* if you divide an integere x by anothere integer y, the result is another integer, then; y is a factor of x.

# 9! = 9 x 8!

# āϕ⧋āύ āĻāĻ•āϟāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦ⧇āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻ• āĻĢā§āϝāĻžāĻ•ā§āϟāϰ āĻĨāĻžāĻ•āϞ⧇ āĻŦāϞāĻž āĻšāϞ⧇, āϤāĻžāĻšāϞ⧇ āĻŦ⧁āĻā§‡ āύ⧇āĻŦ āϤāĻž āĻšāĻŦ⧇ āϕ⧋āύ āĻāĻ•āϟāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ¸ā§āĻ•āϝāĻŧāĻžāϰāĨ¤ āϝ⧇āĻŽāύ- 4 āĻāϰ āĻŦ⧇āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻ• āĻĢā§āϝāĻžāĻ•ā§āϟāϰ āφāϛ⧇ = 1,2,4

āϝ⧇āĻŽāύ-

# āĻĻ⧁āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻĢāϞ = āϏāĻ‚āĻ–ā§āϝāĻžāĻĻā§āĻŦāϝāĻŧ⧇āϰ āĻ—.āϏāĻž.āϗ⧁(H.C.F) x āϏāĻ‚āĻ–ā§āϝāĻžāĻĻā§āĻŦāϝāĻŧ⧇āϰ āϞ.āϏāĻž.āϗ⧁(L.C.M)

āĻ…āĻ°ā§āĻĨāĻžā§Ž, LCM x HCF = a x b āĻŦāĻž, If the HCF of a and b = x, and the LCM of a and b = y Then, ab = xy

Example:  a=4, b=5,

The HCF of 4 & 5 is = 1.

The LCM of 4 & 5 = 20.

So,

R.H.S = 4 × 5 = 20,

L.H.S = LCM x HCF = 20 × 1 = 20

(proved)

# Multiple of ratio x H.C.F = L.C.M

So, 3x4x4 = 48

 

1. * If a number N is divisible by a number x, then N is also divisible by all factors of x.
Example: 32 is divisible by 16. Therefore, 32 must be divisible by 1, 2, 4, 8 which are all factors of 16.

02. āĻ•āĻŋāϛ⧁ āϏāĻ‚āĻ–ā§āϝāĻžāϰ H.C.F āĻŦ⧇āϰ āĻ•āϰāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻ…āĻĒāϰ āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ factor āĻšāϞ⧇, factor āϟāĻŋ āϰ⧇āϖ⧇ āĻ…āĻĒāϰ āϏāĻ‚āĻ–ā§āϝāĻž āωāĻĒ⧇āĻ•ā§āώāĻž āĻ•āϰāĻž āϝāĻžāϝāĻŧāĨ¤
Example: Find the L.C.M of 9,15,18,25
āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ 9, 18 āĻāϰ factor āĻāĻŦāĻ‚ 15 āĻāϰ 3 āĻ“ 5, 183 25 āĻāϰ factor, 183 25 āĻāϰ L.C.M āĻŦ⧇āϰ āĻ•āϰāϞ⧇ āωāĻ¤ā§āϤāϰ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāĻŦ⧇āĨ¤

03. āĻ•āĻŋāϛ⧁ āϏāĻ‚āĻ–ā§āϝāĻžāϰ H.C.F āĻŦ⧇āϰ āĻ•āϰāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻ…āĻĒāϰ āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ factor āĻšāϞ⧇, factor āϟāĻŋ āϰ⧇āϖ⧇ āĻ…āĻĒāϰ āϏāĻ‚āĻ–ā§āϝāĻž āωāĻĒ⧇āĻ•ā§āώāĻž āĻ•āϰāĻž āϝāĻžāϝāĻŧāĨ¤
Example: Find the H.C.F of 9,18 and 21
āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ 18 āωāĻĒ⧇āĻ•ā§āώāĻž āĻ•āϰ⧇ 9 āĻ“ 21 āĻāĻŦāĻ‚ H.C.F āĻŦ⧇āϰ āĻ•āϰāϞ⧇āχ āωāĻ¤ā§āϤāϰ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāĻŦ⧇āĨ¤

04. āϝāĻĻāĻŋ āĻāĻŽāύ āϕ⧋āύ number āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāϤ⧇ āĻŦāϞāĻž āĻšāϝāĻŧ āϝāĻž āĻ•āĻŋāϛ⧁ number āĻĻāĻŋāϝāĻŧ⧇ divisible āϤāĻž āĻšāϞ⧇ number āϗ⧁āϞ⧋āϰ L.C.M āĻŦ⧇āϰ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤
Example: find the number which is divisible by 2, 3, 5 and 7
Ans. 210.

05. āϝāĻĻāĻŋ āϏāĻŽāĻžāύ āϕ⧋āύ number āĻŦ⧇āϰ āĻ•āϰāϤ⧇ āĻŦāϞāĻž āĻšāϝāĻŧ āϝāĻž āĻ•āĻŋāϛ⧁ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻāĻŋāϝāĻŧ⧇ āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ• āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻāĻ•āχ remainder āĻĨāĻžāϕ⧇ āϤāĻŦ⧇ L.C.M āĻāϰ āϏāĻžāĻĨ⧇ remainder āϝ⧋āĻ— āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤
Example: āφāϗ⧇āϰ Ans. āĻāϰ āϏāĻžāĻĨ⧇ 1 āϝ⧋āĻ— āĻ•āϰ⧇ āĻĻāĻŋāϞ⧇ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ• āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ 1 remainder āĻĨāĻžāĻ•āĻŦ⧇āĨ¤

06. āĻĒā§āϰāĻĻāĻ¤ā§āϤ number āϗ⧁āϞ⧋āϰ āϏāĻŽ āĻŦā§āϝāĻŦāϧāĻžāύ⧇āϰ āĻ•āĻŋāϛ⧁ remainder āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ āĻĨāĻžāĻ•āϞ⧇ L.C.M āĻĨ⧇āϕ⧇ āĻŦā§āϝāĻŦāϧāĻžāύ āĻŦāĻŋāϝāĻŧā§‹āĻ— āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤
Example: 210 āĻĨ⧇āϕ⧇ 1 āĻŦāĻŋāϝāĻŧā§‹āĻ— āĻ•āϰāϞ⧇ āĻ…āĻ°ā§āĻĨāĻžā§Ž 209 āϕ⧇ 2, 3, 5, 7 āĻĻāĻŋāϝāĻŧ⧇ āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ 1, 2, 4, āĻ“ 6 āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ āĻĨāĻžāĻ•āĻŦ⧇ (āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻŦā§āϝāĻŦāϧāĻžāύ 1 )

7. āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻž āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āĻ•āĻŋāϛ⧁ āϏāĻ‚āĻ–ā§āϝāĻž divisible āĻŦ⧇āϰ āĻ•āϰāϤ⧇ āĻŦāϞāϞ⧇ H.C.F āĻŦ⧇āϰ āĻ•āϤ⧇ āĻšāĻŦ⧇āĨ¤

8. Fraction āĻāϰ comparison āĻŦāĻž addition āĻŦāĻž Subtraction āĻāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ fraction āϗ⧁āϞ⧋ āĻāĻ•āχ denominator āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ (āϏāĻŽāĻšāϰ āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ) āĻ•āϰāϤ⧇ āĻšāϝāĻŧ, āϏ⧇āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ L.C.M āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ Least Common denominator (LCD) āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĻž āĻšāϝāĻŧāĨ¤

 

Prime numbers(āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž):

āϝ⧇(āϏāĻ•āϞ) (āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ•)āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ 1 āĻ“ āϐ āϏāĻ‚āĻ–ā§āϝāĻž āĻ›āĻžā§œāĻž āĻ…āĻ¨ā§āϝ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāσāĻļ⧇āώ⧇ āĻ­āĻžāĻ—(divisible) āĻ•āϰāĻž āϝāĻžāϝāĻŧ āύāĻž, āϤāĻžāϕ⧇ Prime numbers(āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž) āĻŦāϞ⧇āĨ¤

* āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ•(factor) āĻĻ⧁āχāϟāĻŋ āĻšā§Ÿ- 1 āĻ“ āϐ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāĨ¤ āϝ⧇āĻŽāύ- 5 āĻāϰ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āĻĻ⧁āϟāĻŋ āĻšāĻšā§āϛ⧇: 1, 5 (= 5/1, 5/5) āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤

* 1 āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āύ⧟, āĻ•āĻžāϰāĻŖ āĻāϰ āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• āĻāĻ•āϟāĻŋ (āĻļ⧁āϧ⧁ 1āχ)āĨ¤

* 2 āĻšāĻšā§āϛ⧇ āĻāĻ•āĻŽāĻžāĻ¤ā§āϰ āĻœā§‹ā§œ(even) prime nuumber.

 

# āĻ āϟāĻĒāĻŋāϕ⧇āϰ Solving Teqniques Guidelines:

✔1-300 āĻāϰ āĻŽāĻ§ā§āϝ⧇ prime numbers āϗ⧁āϞ⧋ āĻŽā§āĻ–āĻ¸ā§āĻĨ āϜāĻžāύāϤ⧇ āĻšāĻŦ⧇āĨ¤ (āĻŽā§āϝāĻžāĻĨāϗ⧁āϞ āĻĻā§āϰ⧁āϤ āĻĒāĻžāϰāĻžāϰ āϜāĻ¨ā§āϝ)

✔āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻž Prime Number āĻ•āĻŋāύāĻž āϤāĻž āύāĻŋāĻ°ā§āĻŖāϝāĻŧ⧇āϰ āϏāĻšāϜ āĻĒāĻĻā§āϧāϤāĻŋ āϟāĻŋ āϜāĻžāύāϤ⧇ āĻšāĻŦ⧇āĨ¤

✔āϝ⧇āϕ⧋āύ⧋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ square āĻ­ā§āϝāĻžāϞ⧁ (āĻŦāĻ°ā§āϗ⧇āϰ āύāĻžāĻŽāϟāĻž) āϗ⧁āϞāĻž āĻŽā§āĻ–āĻ¸ā§āĻĨ āϜāĻžāύāϤ⧇ āĻšāĻŦ⧇āĨ¤

āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, āĻĻ⧁āχ āĻ…āĻ™ā§āϕ⧇āϰ āϝ⧇āϕ⧋āύ⧋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āĻ— āύāĻŋāĻ°ā§āĻŖā§Ÿā§‡āϰ āĻļāĻ°ā§āϟāĻ•āĻžāϟ āύāĻŋ⧟āĻŽāϟāĻŋ āϜāĻžāύāϤ⧇ āĻšāĻŦ⧇āĨ¤

āĻāĻ›āĻžā§œāĻžāĻ“, āĻĻ⧁āχāϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āύ⧇āϰ āĻļāĻ°ā§āϟāĻ•āĻžāϟ āύāĻŋ⧟āĻŽāϟāĻŋ āϜāĻžāύāϤ⧇ āĻšāĻŦ⧇āĨ¤

 

āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻž Prime Number āĻ•āĻŋāύāĻž āϤāĻž āύāĻŋāĻ°ā§āĻŖāϝāĻŧ⧇āϰ āĻāĻ•āϟāĻŋ āϏāĻšāϜ āĻĒāĻĻā§āϧāϤāĻŋ:

➤ āĻĒā§āϰāĻĨāĻŽā§‡, number āϟāĻŋāϰ āĻ•āĻžāĻ›āĻžāĻ•āĻžāĻ›āĻŋ approximate root(āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ) āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤

➤ āĻāϰāĻĒāϰ. numberāϟāĻŋāϕ⧇ āϐāϟāĻžāϰ root number āĻāϰ āĻšā§‡āϝāĻŧ⧇ āϛ⧋āϟ āĻŦāĻž āϏāĻŽāĻžāύ prime numberāϗ⧁āϞ⧋ āĻĻāĻŋā§Ÿā§‡ āĻ­āĻžāĻ— āĻ•āϰāϤ⧇ āĻšāĻŦ⧇, āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇-

– āϝāĻĻāĻŋ,numberāϟāĻŋ prime numberāϗ⧁āϞ⧋āϰ āϝ⧇āϕ⧋āύ⧋ āĻāĻ•āϟāĻŋ āĻĻāĻŋā§Ÿā§‡ evenly divisible āĻšā§Ÿ, āϤāĻŦ⧇ numberāϟāĻŋ Prime Number āĻšāĻŦ⧇ āύāĻžāĨ¤

– āφāϰ,numberāϟāĻŋ āϕ⧋āύ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āχ evenly divisible āύāĻž āĻšāϝāĻŧ, āϤāĻŦ⧇ numberāϟāĻŋ Prime Number.

Example: Is the number 191 prime?
➤ 191 āĻāχ number āϟāĻŋāϰ āĻ•āĻžāĻ›āĻžāĻ•āĻžāĻ›āĻŋ approximate root(āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ) āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ- 14, [14² = 196], 14² > 191

➤ 14 āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ āĻšā§‡ā§Ÿā§‡ āϛ⧋āϟ Prime number āϗ⧁āϞ⧋ āĻšāĻšā§āϛ⧇- 2, 3, 5, 7, 11, 13; āϤāĻžāχ āĻļ⧁āϧ⧁ āĻāϗ⧁āϞ⧋ āĻĻāĻŋā§Ÿā§‡āχ āĻŸā§‡āĻ¸ā§āϟāĻŋāĻ‚ āĻ•āϰāϞ⧇ āĻšāĻŦ⧇āĨ¤ āĻāĻĻ⧇āϰ āϕ⧋āύāϟāĻŋ āĻĻāĻŋāϝāĻŧ⧇āχ 191 evenly divisible āύāĻžāĨ¤ āϤāĻžāχ 191 āĻāĻ•āϟāĻŋ prime number.

2 āĻĻāĻŋā§Ÿā§‡ divisible āĻ•āĻŋāύāĻž āϤāĻž āĻšā§‡āĻ•: āϝāĻĻāĻŋ integer āĻāϰ āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž(units digit)āϟāĻŋ even or 0 āĻšāϝāĻŧāĨ¤
3 āĻĻāĻŋā§Ÿā§‡ divisible āĻ•āĻŋāύāĻž āϤāĻž āĻšā§‡āĻ•: āϝāĻĻāĻŋ integer āĻāϰ digit āϗ⧁āϞ⧋āϰ sum 3 āĻĻāĻŋāϝāĻŧ⧇ divisible(āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ) āĻšā§ŸāĨ¤
5 āĻĻāĻŋā§Ÿā§‡ divisible āĻ•āĻŋāύāĻž āϤāĻž āĻšā§‡āĻ•: āϝāĻĻāĻŋ āϤāĻžāϰ āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž(units digit)āϟāĻŋ 0 āĻŦāĻž 5 āĻšāϝāĻŧāĨ¤
7 āĻĻāĻŋā§Ÿā§‡ divisible āĻ•āĻŋāύāĻž āϤāĻž āĻšā§‡āĻ•: āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻžāϤ⧇ āĻĄāĻŦāϞ(Double) āĻ•āϰāϞ⧇ āϝāĻž āĻšā§Ÿ āϏ⧇āϟāĻž āĻŽā§āϞ āϏāĻ‚āĻ–ā§āϝāĻžāϰāϰ āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦā§āϝāĻžāϤāĻŋāϤ āĻŦāĻžāĻ•āĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻĨ⧇āϕ⧇ āĻŦāĻŋā§Ÿā§‹āĻ—(Subtract) āĻĻ⧇āĻŦ, āĻāϰāĻĒāϰ ā§­ āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ—(divisible) āĻ•āϰāĻŦāĨ¤ [āĻŦ⧜ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϞ⧇ āĻĒāĻ°ā§āϝāĻžā§ŸāĻ•ā§āϰāĻŽā§‡ āĻāĻ­āĻžāĻŦ⧇ āĻ•āϰāϤ⧇ āĻĨāĻžāĻ•āĻŦ] āϝ⧇āĻŽāύ- 191 āĻāĻ°Â last digit āϟāĻŋāϰ Double 1→2, āĻŦāĻžāĻ•āĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻĨ⧇āϕ⧇ Subtract 19−2=17, āϝāĻž 7 āĻĻā§āĻŦāĻžāϰāĻž divisible āύ⧟.
11 āĻĻāĻŋā§Ÿā§‡ divisible āĻ•āĻŋāύāĻž āϤāĻž āĻšā§‡āĻ•: āϝāĻĻāĻŋ āĻĄāĻžāύ āĻĻāĻŋāĻ• āĻĨ⧇āϕ⧇ odd numbered place āϗ⧁āϞ⧋āϰ sum of the digit āĻāĻŦāĻ‚ even numbered place āϗ⧁āϞ⧋āϰ sum of the digit āĻāϰ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ 0 āĻŦāĻž 11 āĻĻā§āĻŦāĻžāϰāĻž divisible āĻšāϝāĻŧāĨ¤13 āĻĻāĻŋā§Ÿā§‡ divisible āĻ•āĻŋāύāĻž āϤāĻž āĻšā§‡āĻ•: āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻžāϤ⧇ 4āϗ⧁āĻŖ āĻ•āϰāϞ⧇ āϝāĻž āĻšā§Ÿ āϏ⧇āϟāĻž āĻŽā§āϞ āϏāĻ‚āĻ–ā§āϝāĻžāϰāϰ āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦā§āϝāĻžāϤāĻŋāϤ āĻŦāĻžāĻ•āĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻĨ⧇āϕ⧇ āĻŦāĻŋā§Ÿā§‹āĻ— āĻĻ⧇āĻŦ, āĻāϰāĻĒāϰ 13 āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāĻŦāĨ¤ (āĻŦ⧜ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϞ⧇ āĻĒāĻ°ā§āϝāĻžā§ŸāĻ•ā§āϰāĻŽā§‡ āĻāĻ­āĻžāĻŦ⧇ āĻ•āϰāϤ⧇ āĻĨāĻžāĻ•āĻŦāĨ¤)

āϏāĻžāĻœā§‡āĻļāύāσ 11,7,13 āĻĻāĻŋā§Ÿā§‡ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻ•āĻŋāύāĻž āϤāĻž āϏāĻŦāĻžāϰ āφāϗ⧇ āĻšā§‡āĻ• āĻ•āϰāĻŦāĨ¤ āĻ•āĻžāϰāύāϏāĻŽā§āĻš- 2,5 āĻĻāĻŋā§Ÿā§‡ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻ•āĻŋāύāĻž āϤāĻž āĻšā§‹āϖ⧇āϰ āĻĒāϞāϕ⧇ āĻāĻŽāύāĻŋ āĻŦ⧁āĻāĻž āϝāĻžā§Ÿ, āφāϰ ā§Š āĻĻāĻŋ⧟ āĻĻāĻŋā§Ÿā§‡ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻ•āĻŋāύāĻž āϤāĻžāĻ“ āĻĻā§āϰ⧁āϤ āĻŦ⧇āϰ āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤

āĻļāĻ°ā§āϟāĻ•āĻžāϟ:

# āĻĻ⧁āχ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖ āĻ•āϰāĻžāϰ āύāĻŋ⧟āĻŽ (Allways āĻ•āĻžāĻ°ā§āϝāĻ•āϰ)-

āĻŦāĻŋāĻ•āĻ˛ā§āĻĒ(āϏāĻŦāĻšā§‡ā§Ÿā§‡ āϏāĻšāϜ āύāĻŋ⧟āĻŽ): # āĻĻ⧁āχ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖ āĻ•āϰāĻžāϰ āύāĻŋ⧟āĻŽ / āĻŦāĻ°ā§āĻ— āĻ•āϰāĻžāϰ āύāĻŋ⧟āĻŽ(Allways āĻ•āĻžāĻ°ā§āϝāĻ•āϰ)-
āĻļāĻ°ā§āϟāĻ•āĻžāϟ āϗ⧁āĻŖ āĻ•āϰāĻžāϰ āύāĻŋāϝāĻŧāĻŽ

# āϘāύ āĻ•āϰāĻžāϰ āύāĻŋ⧟āĻŽ- 

#

āϤāĻŋāύ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖ āĻ•āϰāĻžāϰ āύāĻŋ⧟āĻŽ (Allways āĻ•āĻžāĻ°ā§āϝāĻ•āϰ)-

āĻ…āĻĨāĻŦāĻž,

 

 

1-100 āĻāϰ āĻŽāĻ§ā§āϝ⧇ prime numbers 25āϟāĻŋ: (4422 3223 21 āĻšāĻšā§āϛ⧇ āĻļāĻ°ā§āϟāĻ•āĻžāϟ Memorize sequence āĻŸā§‡āĻ•āύāĻŋāĻ•)

  • 2, 3, 5, 7,
  • 11, 13, 17, 19,
  • 23, 29,
  • 31, 37,
  • 41, 43, 47,
  • 53, 59,
  • 61, 67,71,
  • 73, 79,
  • 83, 89,
  • 97

[Trap(prime nuumber āύ⧟, āĻ•āĻŋāĻ¨ā§āϤ⧁ āϤāĻžāĻ“ āϝ⧇āϗ⧁āϞ⧋āϤ⧇ āϭ⧁āϞ āĻ•āϰāϤ⧇ āĻĒāĻžāϰ): 53, 57, 63, 69, 77, 81, 87, 91, 93]

101-200 āĻāϰ āĻŽāĻ§ā§āϝ⧇ prime numbers 21āϟāĻŋ: (4113 1222 14 āĻšāĻšā§āϛ⧇ āĻļāĻ°ā§āϟāĻ•āĻžāϟ Memorize sequence āĻŸā§‡āĻ•āύāĻŋāĻ•)

  • 101,103,107,109
  • 113
  • 127
  • 131,137, 139
  • 149
  • 151, 157
  • 163, 167
  • 173,179
  • 181
  • 191,193,197,199

[Trap(prime nuumber āύ⧟, āĻ•āĻŋāĻ¨ā§āϤ⧁ āϤāĻžāĻ“ āϝ⧇āϗ⧁āϞ⧋āϤ⧇ āϭ⧁āϞ āĻ•āϰāϤ⧇ āĻĒāĻžāϰ):[117, 123, 141, 143, 147, 153, 161, 171, 177, 183, 187]

201-300 āĻāϰ āĻŽāĻ§ā§āϝ⧇ prime numbers 15āϟāĻŋ: (0132 1222 20 āĻšāĻšā§āϛ⧇ āĻļāĻ°ā§āϟāĻ•āĻžāϟ Memorize sequence āĻŸā§‡āĻ•āύāĻŋāĻ•)

  • 211
  • 223 227 229
  • 233 239 –
  • 241
  • 251 257
  • 263 269 –
  • 271 277
  • 281 283

(((

āĻŦāĻ°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻž:- āϕ⧋āύ⧋ āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϞ āĻ“āχ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻĢāϞāĨ¤ āϝ⧇āĻŽāύ- ⧍ā§Ģ = ā§Ģ x ā§Ģ

āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞāσ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇āĻ“ āϐ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻāĻŋāϝāĻŧ⧇ āϗ⧁āĻŖ āĻ•āϰāϞ⧇ āϝ⧇ āύāϤ⧁āύ āϏāĻ‚āĻ–ā§āϝāĻž āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāϝāĻŧ āϤāĻžāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āĻšāĻŦ⧇ āĻĒā§āϰāĻĨāĻŽā§‹āĻ•ā§āϤ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāĨ¤ āϝ⧇āĻŽāύ- 2^⧍ = 4

āĻĻāĻļāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ-

āϝ⧇ āύāĻžāĻŽāϟāĻž āĻ•āĻžāĻœā§‡ āϞāĻžāĻ—āĻŦ⧇:

(āĻŦāĻ°ā§āϗ⧇āϰ āύāĻžāĻŽāϟāĻž)- [āφāĻĒ⧁ āĻŦāϞāϛ⧇ square āĻ­ā§āϝāĻžāϞ⧁ āϗ⧁āϞāĻž āĻŽā§āĻ–āĻ¸ā§āĻĨ āĻ•āϰ⧇ āĻĢ⧇āϞāϤ⧇]

  •  1² = 1
  • 2² = 4
  • 3² = 9
  • 4² = 16
  • 5² = 25
  • 6² = 36
  • 7² = 49
  • 8² = 64
  • 9² = 81
  • 10² = 100
  • 11² = 121
  • 12² = 144
  • 13² = 169
  • 14² = 196
  • 15² = 225
  • 16² = 256
  • 17² = 289
  • 18² = 324
  • 19² = 361
  • 20² = 400
  • 25² = 625

āĻļāĻ°ā§āϟāĻ•āĻžāϟ āĻ•āϰāĻŦ-

(āϘāύ⧇āϰ āύāĻžāĻŽāϟāĻž)-

  •  1Âŗ = 1
  • 2Âŗ = 8
  • 3Âŗ = 27
  • 4Âŗ = 64
  • 5Âŗ = 125
  • 6Âŗ = 216
  • 7Âŗ = 343
  • 8Âŗ = 512
  • 9Âŗ = 729
  • 10Âŗ = 1000

āĻļāĻ°ā§āϟāĻ•āĻžāϟ āĻ•āϰāĻŦ-

āĻļāĻ°ā§āϟāĻ•āĻžāϟ – https://youtu.be/I1Ago5gSHeo

——————

ā§§ā§Ļ-⧍ā§Ļ āĻāϰ āύāĻŋāĻšā§‡āϰ āĻĻ⧁āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āύāσ

——————

*** 2 āĻāϰ āĻĒāĻžāĻ“ā§ŸāĻžāϰ⧇āϰ āύāĻžāĻŽāϟāĻž āĻļāĻŋāĻ–āĻž:

  •  2š = 2
  • 2² = 4
  • 2Âŗ = 8
  • 2⁴ = 16
  • 2âĩ = 32
  • 2âļ = 64
  • 2⁡ = 128
  • 2⁸ = 256
  • 2⁚ = 512
  • 2š⁰= 1024

*** 9 āĻāϰ āĻĒāĻžāĻ“ā§ŸāĻžāϰ⧇āϰ āύāĻžāĻŽāϟāĻž āĻļāĻŋāĻ–āĻž:

  • 9š = 9
  • 9² = 81
  • 9Âŗ = 729

*** 7 āĻāϰ āĻĒāĻžāĻ“ā§ŸāĻžāϰ⧇āϰ āύāĻžāĻŽāϟāĻž āĻļāĻŋāĻ–āĻž:

  • 7š = 7
  • 7² = 49
  • 7Âŗ = 343
  • 7⁴ = 2401

*** 5 āĻāϰ āĻĒāĻžāĻ“ā§ŸāĻžāϰ⧇āϰ āύāĻžāĻŽāϟāĻž āĻļāĻŋāĻ–āĻž:

  • 5š = 5
  • 5² = 25
  • 5Âŗ = 125
  • 5⁴ = 625
  • 5âĩ = 3125

āĻ“ āĻāϰ āĻĒā§‚āĻ°ā§āĻŖ āĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻž 25 āĻāϰ āĻĒāĻžāĻ“ā§ŸāĻžāϰ⧇āϰ āύāĻžāĻŽāϟāĻž āĻļāĻŋāĻ–āĻž:

  • š =
  • ² =
  • Âŗ =
  • ⁴ =
  • âĩ =
  • âļ =
  • ⁡ =

———–

Co-prime numbers(āϏāĻš-āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž):  āĻĻ⧁āχāϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ Co-prime number āĻŦāϞāĻž āĻšāĻŦ, āϝāĻĻāĻŋ āϤāĻžāĻĻ⧇āϰ h.c.f 1 āĻšā§ŸāĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž āϝāĻ–āύ ā§§ āĻ›āĻžā§œāĻž āĻĻ⧁āχāϟāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϏāĻžāϧāĻžāϰāĻŖ āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• āĻĨāĻžāϕ⧇āύāĻž, āϤāĻ–āύ āϤāĻžāϰāĻž āĻĒāϰāĻ¸ā§āĻĒāϰ āϏāĻšāĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤ // Consider a set of two numbers, if they have no positive integer that can divide both, other than 1, the pair of numbers is co-prime.

Example: For 21 and 27:

  • The factors of 21 are 1, 3, 7, 21.
  • The factors of 27 are 1, 3, 9, 27.

Here 21 and 27 have two common factors; they are 1 and 3. HCF is 3 and they are not co-prime.

Co prime with Co prime numbers pairs
1 (1, 2), (1, 3), (1, 4), (1, 5)  (1, 6),â€Ļ.., (1, 20),â€Ļ.
2 (2, 3), (2, 5), (2, 7), (2, 9), â€Ļ, (2, 15),â€Ļ..
3 (3, 4), (3, 5), (3, 7), (3, 10), (3, 11),â€Ļ., (3, 20),â€Ļ
4 (4, 5), (4, 7), (4, 9), (4, 11), (4, 13), (4, 15),â€Ļ.
5 (5, 6), (5, 7), (5, 8), (5, 9), (5, 11), (5, 12),â€Ļ

Co-prime Numbers from 1 to 100: There are several pairs of co-primes from 1 to 100 which follow the above properties. Some of them are:

(13, 14)
(28, 57)
(1, 99)
(2, 97)
(46, 67)
(75, 41) and so on.

Composite numbe(āĻ…-āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž/ āϝ⧌āĻ—āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž): 1 āĻ“ āϐ āύāĻžāĻŽā§āĻŦāĻžāϰ āĻ›āĻžā§œāĻžāĻ“ āĻāĻ•/āĻāĻ•āĻžāϧāĻŋāĻ• number āĻĻāĻŋā§Ÿā§‡ evenly divisible āĻšāϞ⧇ āϏ⧇āϟāĻŋ Composite number. // āĻāĻ•āĻžāϧāĻŋāĻ• āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻĢāϞ āĻšāĻŋāϏ⧇āĻŦ⧇ āϝ⧇āϏāĻ•āϞ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āϝāĻžā§Ÿ, āϏ⧇āϗ⧁āϞ⧋āχ āϝ⧌āĻ—āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤ āϝ⧇āĻŽāύ- 4.6,8,9,12, 10=5×2 etc.

 

# of Integers in Interval Exercise: To find the number of integers in an interval, simply use the formula below:

Last Number− First Number +1

For example, to find the number of integers from 27 to 84, inclusive…

84−27+1=58

NOTE: The word “inclusive” means you include the 27 and 84 in the range and the word “exclusive” means you don’t. If you see the word exclusive, you would instead do:

83−28+1=56

Practice:

Q: Which of the following is a prime number?

         (a) 143                     (b) 289                     (c) 117                     (d) 359

Solution:

Clearly,

143 = 13 X 11 So, 143 is not prime.

289 = 17 X 17 So, 289 is not prime.

117 = 39 X 3   So, 117 is not prime.

359<(20)2; prime numbers less than 20 are 2, 3, 5. 7, 11, 13, 17, 19.

And, 359 is not exactly divisible by any of them.

So, 359 is a prime number.

Q:

(A) Quantity A is greater.
(B) Quantity B is greater.
(C) The two quantities are equal.
(D) The relationship cannot be determined from the information given.

Solution:

the correct answer is: Choice A, Quantity A is greater.

Explanation: A>B

Quantity A is 29. Because, 29 is the least prime number greater than 24 (when the integers greater than 24 are 25, 26, 27, 28 are not prime numbers).

Quantity B is 23. Because, 29 is the greatest

Q: If a is the smallest prime number greater than 21 and b is the largest prime number less than 16, then ab =

A) 299

B) 323

C) 330

D) 345

E) 351

Solution:

Now, a is the smallest prime number greater than 21 (a = 23)
Similarly, b is the largest prime number lesser than 16 (b = 13)

Therefore, the value of ab = 23*13 = 299(ends with a 9 – Only option in answer options is Option A.

#

Main Topics: Fractions, Decimals, || Ratios-Proportion, || Percent

Extend Topics: Fractions, Decimals || Exponents, Square, Cube, Square root, Cube root || Real Number, Number Line, Absolute Value, Reciprocals || Ratios-Proportion || Percent

Inequalities and Absolute Value

negetive exponent ≠ Negetive Number

āĻ•ā§Ÿā§‡āĻ•āϟāĻž āĻŽāĻžāύ āĻŽā§āĻ–āĻ¸ā§āĻĨ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇-

odd order root

even order root

 

[a < a3 < a4 < a2]

(-1 < a < 0)

 

#

Average, Ages

Numbers

Time & Distance

Work Problems

Set

Mixture Problems

#

 

# interest

Basic terms

Acute angle – āϏ⧁āĻ•ā§āώāϕ⧋āύ
Alternate angle – āĻāĻ•āĻžāĻ¨ā§āϤāϰ āϕ⧋āύ
Complementary angle – āĻĒā§‚āϰāĻ• āϕ⧋āύ
Right angle – āϏāĻŽāϕ⧋āĻŖ
Obtuse angle – āĻ¸ā§āĻĨ⧁āϞ āϕ⧋āύ
Parallelogram – āϏāĻžāĻŽāĻžāĻ¨ā§āϤāϰāĻŋāĻ•
Square – āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ
Triangle –āĻ¤ā§āϰāĻŋāϭ⧁āϜ
Perpendicular – āϞāĻŽā§āĻŦ
Isosceles triangle – āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāϭ⧁āϜ
Equilateral triangle – āϏāĻŽāĻŦāĻžāĻšā§
Scalene triangle – āĻŦāĻŋāώāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāϭ⧁āϜ
Hypotenuse – āĻ…āϤāĻŋāϭ⧁āϜ
Area – āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ
Perimeter – āĻĒāϰāĻŋāϏ⧀āĻŽāĻž
Regular cube – āϏ⧁āϏāĻŽ āϘāύ
Volume – āĻ†ā§ŸāϤāύ
Cube – -āϘāύ
Radius – āĻŦā§āϝāϏāĻžāĻ°ā§āϧ
Circumference – āĻĒāϰāĻŋāϧāĻŋ
Tangent – āĻ¸ā§āĻĒāĻ°ā§āĻļāĻ•
Semi-circle – āĻ…āĻ°ā§āϧāĻŦ⧃āĻ¤ā§āϤ
Diameter – -āĻŦā§āϝāĻžāϏ
Altitude – āωāĻšā§āϚāϤāĻž
Plural āĻāϰ āĻ…āĻ¨ā§āϝ āĻāĻ• āĻ…āĻ°ā§āĻĨ)
āĻļāĻŦā§āĻĻāĻžāĻ°ā§āĻĨ āĻļāĻŋāϖ⧁āύāĨ¤

 

#

 

 

4. Data Analysis

Quartiles, Standard Deviation and Normal Distribution

āφāϗ⧇ āĻœā§‡āύ⧇āĻ›āĻŋ-

  • sets
  • Central tendency

āφāϜāϕ⧇ āϜāĻžāύāĻŦ-

  • Quantiles
  • standard deviation
  • Normal distribution(+ visualization)

Data Analysis āĻ āφāĻŽāĻžāĻĻ⧇āϰ āĻāĻ• āϏ⧇āϟ āĻĄā§‡āϟāĻž āĻĻā§‡ā§ŸāĻž āĻĨāĻžāϕ⧇āĨ¤ āϝ⧇āĻŽāύ- {2,5,7,9,13, 27, 39}

āφāĻŽāϰāĻž āϜāĻžāύāĻŋ, Central tendency āĻŦāϞāϤ⧇ meaw(average) āĻ•āĻŋāĻ­āĻžāĻŦ⧇ āĻŦ⧇āϰ āĻ•āϰāϤ⧇ āĻšā§Ÿ āϤāĻž āĻŦ⧁āĻāĻŋāĨ¤

āĻĄā§‡āϟāĻž āϏ⧇āϟ āĻāϰ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻž elements āϝ⧋āĻ— āĻ•āϰ⧇ ⧍ āĻĻāĻŋā§Ÿā§‡ āĻ­āĻžāĻ— āĻ•āϰāϞ⧇āχ āφāĻŽāϰāĻž meaw(average) āĻ­ā§āϝāĻžāϞ⧁āϟāĻž āĻĒā§‡ā§Ÿā§‡ āϝāĻžāχāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, āϕ⧋āύ⧋ āύāĻžāĻŽā§āĻŦāĻžāϰ⧇āϰ āϰāĻŋāĻĒāĻŋāĻŸā§‡āĻļāύ āĻĨāĻžāĻ•āϞ⧇ āϏ⧇āϟāĻž mod āĻšāĻŋāϏ⧇āĻŦ⧇ āĻ•āĻžāϜ āĻ•āϰ⧇āĨ¤
Medium āϝāĻ–āύ āĻŦ⧇āϰ āĻ•āϰ⧇āĻ›āĻŋ āϤāĻ–āύāĻ“ meaw(average) āĻ­ā§āϝāĻžāϞ⧁ āϕ⧋āύāϟāĻž āϏ⧇āϟāĻž āĻŦ⧇āϰ āĻ•āϰ⧇āĻ›āĻŋāĨ¤

Central tendency āĻŦ⧇āϰ āĻ•āϰāĻžāϰ āĻāχ āϝ⧇ āĻšāĻŋāϏāĻžāĻŦ āύāĻŋāĻ•āĻžāĻļ same way āϟāĻžāχ āĻšāϞ Quantiles.
Quantiles āĻāϰ āĻ•āĻžāϜ āĻšāϞ āφāĻŽāĻžāĻĻ⧇āϰ āϝ⧇ āĻĄā§‡āϟāĻžāϗ⧁āϞ⧋ āĻ°ā§Ÿā§‡āϛ⧇ āĻĄā§‡āϟāĻžāϗ⧁āϞ⧋āϕ⧇ āϏāĻŽāĻžāύāĻ­āĻžāϗ⧇ āĻ­āĻžāĻ— āĻ•āϰ⧇ āĻĢ⧇āϞāĻžāĨ¤ āϝāĻžāϤ⧇ āφāϰāĻ“ exact way āϤ⧇ āϏāϞāĻŋāωāĻļāύ āĻŦ⧇āϰ āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤
āϧāϰāĻŋ, āφāĻŽāĻžāĻĻ⧇āϰ āĻĄā§‡āϟāĻž ā§§ā§ŠāϟāĻž{4, 8, 12, 15, 18, 21, 27, 39, 52, 63, 67, 77}, āĻāϗ⧁āϞāĻžāϕ⧇ āϏāĻŽāĻžāύ ā§ĒāĻ­āĻžāϗ⧇ āĻ­āĻžāĻ— āĻ•āϰāϤ⧇ āĻ¯ā§‡ā§Ÿā§‡ ā§ŠāĻŦāĻžāϰ āĻ­āĻžāĻ™āϤ⧇ āĻšā§Ÿ(Q1,Q2,Q3)āĨ¤ āĻāĻ–āĻžāύ⧇, Q2 āĻšāĻšā§āϛ⧇ total āĻĄā§‡āϟāĻž(A) āĻāϰ medium. [Q1 lower set(M).]

Meaw, mediaw, mode, Quantile

āĻĒā§āϰāĻļā§āύāσ

ā§§āĻŽ āĻ•āĻžāϜ āĻšāĻŦ⧇, āĻĄā§‡āϟāĻžāϗ⧁āϞ⧋āϕ⧇ āϏāĻžāϜāĻŋā§Ÿā§‡ āĻ¨ā§‡ā§ŸāĻž

Standard Deviation:

 

Sub: topic in Probability:-

  1. General Formula
  2. Notation
  3. Complement
  4. OR rule
  5. And rule
  6. Mutually exclusive
  7. Independent event
  8. Conditional probability

 

Probability General Formula = no. of success(āϝ⧇ āĻĢāϞāĻžāĻĢāϞāϟāĻž āϚāĻžāĻšā§āĻ›āĻŋ āϐ āĻĢāϞāĻžāĻĢāϞ āĻ•āϝāĻŧāϟāĻž āφāϛ⧇) / no. of outcome(total)

āĻœā§‡āύ⧇ āϰāĻžāϖ⧁āύ,, # = number; āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻšā§āϝāĻžāĻļāĻŸā§āϝāĻžāĻ— āĻĻāĻŋāϝāĻŧ⧇ āύāĻžāĻŽā§āĻŦāĻžāϰ āϕ⧇ āĻŦ⧁āĻāĻžāϝāĻŧāĨ¤

āωāĻĻāĻžâ€” āϞ⧁āĻĄā§āϤ⧇ ā§ŦāϟāĻž āĻ­ā§āϝāĻžāϞ⧁ āĻĨāĻžāϕ⧇- 1,2,3,4,5,6
āϧāϰāĻŋ, āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, 3 āφāϏāĻžāϰ āϏāĻŽā§āĻ­āĻžāĻŦāύāĻž āĻ•āϤ āϤāĻž āϜāĻžāύāϤ⧇ āϚāĻžāĻšā§āĻ›āĻŋāĨ¤
āϤāĻžāĻšāϞ⧇, P(3) = 1/6
(āĻ•āĻžāϰāĻŖ 3 āĻāĻ–āĻžāύ⧇ āĻāĻ•āϟāĻžāχ āφāϛ⧇, āϤāĻžāχ 3 āφāϏāĻžāϰ āϏāĻŽā§āĻ­āĻžāĻŦāύāĻž 1 āĻŦāϏāĻžāύ⧋ āĻšā§Ÿā§‡āϛ⧇)
āχāĻ‚āϰ⧇āϜāĻŋ āĻ­āĻžāĻ°ā§āϏāύ⧇ āĻ•āϰāϞ⧇,
Event, A = 3
∴ P(A) = 1/6

Complement A = 1,2,4,5,6
∴ P(A’) = 5/6 = 1−1/6 = 1−P(A)
āĻāĻ–āĻžāύ⧇, Complement A āĻāϰ āĻŽāĻžāύ⧇ āĻšāĻšā§āϛ⧇ A āĻŦāĻžāĻĻ⧇(āĻŦāĻžāĻĻāĻŦāĻžāĻ•āĻŋ) āϏāĻŦāĻ•āĻŋāϛ⧁āĨ¤

# or – āĻāϰ āĻŽāĻžāύ⧇ (āĻāϟāĻž āĻ…āĻĨāĻŦāĻž āϐāϟāĻž), + āĻŦā§‹āĻāĻžā§Ÿ, āĻĻ⧁āχāϟāĻž āĻ•āĻ¨ā§āĻĄāĻŋāĻļāύ āĻāϰ āĻŽāĻ§ā§āϝ⧇ āĻšā§Ÿ āĻāϟāĻž, āύāĻž āĻšā§Ÿ āϐāϟāĻžāĨ¤(āĻ…āĻ°ā§āĻĨāĻžā§Ž āϝ⧇āϕ⧋āύ⧋ āĻāĻ•āϟāĻž āĻšāϞ⧇āχ āĻšāϞ)

P(3 or 6) = B = 3 or 6 āĻšāϞ⧇, [āĻāĻ–āĻžāύ⧇, Dice Roll ā§§ āĻŦāĻžāϰ āĻ•āϰāĻž āĻšāĻšā§āϛ⧇]

∴ P(B) = 1/6 + 1/6 = 1/3 (āĻāĻ–āĻžāύ⧇, Probability āĻŦ⧇āĻļāĻŋ)

# and – āĻāϰ āĻŽāĻžāύ⧇ (āĻāϟāĻž āϐāϟāĻž āĻĻ⧁āϟāĻžāχ), X āĻŦā§‹āĻāĻžā§ŸāĨ¤

P(3 and 6) = C = 3 and 6 āĻšāϞ⧇, [āĻāĻ–āĻžāύ⧇, Dice Roll 2 āĻŦāĻžāϰ āĻ•āϰāĻž āĻšāĻšā§āϛ⧇]

∴ P(C) = 1/6 X 1/6 = 1/36 (āĻāĻ–āĻžāύ⧇, Probability āĻ•āĻŽ)

āϝ⧇āĻŽāύ-

  • A AND B = 1 (āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, A=1, B=1)
  • OR Gate āϏāĻžāĻ°ā§āĻ•āĻŋāĻŸā§‡ A OR B = 1 (A=1 āĻšāϞ⧇ B=0,A=0 āĻšāϞ⧇ B=1)

independent: āĻāϟāĻž āĻŦ⧁āĻāϤ⧇ āĻšāϞ⧇ āφāϗ⧇ Mutual exclusive āĻŦ⧁āĻāϤ⧇ āĻšāĻŦ⧇āĨ¤

Mutual exclusive: āĻāĻ•āϟāĻž āĻšāϞ⧇ āφāϰ⧇āĻ•āϟāĻž āĻšāĻŦ⧇ (āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻ…āĻŦāĻļā§āϝāχ āϘāϟāύāĻž āĻĻ⧁āχāĻŦāĻžāϰ āϘāϟāϤ⧇ āĻšāĻŦ⧇)āĨ¤ āύāĻž āφāϰ, Mutual exclusive āĻšāϞ⧇āχ or āϟāĻž āĻšāĻŦ⧇, āĻ•āĻŋāĻ¨ā§āϤ⧁ or āĻĻ⧇āĻ–āϞ⧇āχ Mutual exclusive āĻŦāϞāĻž āϝāĻžāĻŦ⧇ āύāĻžāĨ¤

āϝ⧇āĻŽāύ- 1,2,3,4,5,6 (Roll 2 dice)

āϝāĻĻāĻŋ A = 3, B = 6 āĻšā§Ÿ āϤāĻžāĻšāϞ⧇ P(A) āĻ“ P(B) āĻšāĻšā§āĻ›ā§‡Â āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻž āĻāϕ⧇āĻ•āϟāĻž independent.

independent:

conditional probability:

Parabola || Exceptional Formula 

All Daily Study Lessons List

kmf 11 videos by GREQuantSchool

Manhattan 5LB 48 videos

Facebook group question

Session’s Recording

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *